These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36366091)

  • 1. Research on the Physics-Intelligence Hybrid Theory Based Dynamic Scenario Library Generation for Automated Vehicles.
    Zhang Y; Sun B; Li Y; Zhao S; Zhu X; Ma W; Ma F; Wu L
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review on Functional Testing Scenario Library Generation for Connected and Automated Vehicles.
    Zhu Y; Wang J; Meng F; Liu T
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated architecture for intelligence evaluation of automated vehicles.
    Huang H; Zheng X; Yang Y; Liu J; Liu W; Wang J
    Accid Anal Prev; 2020 Sep; 145():105681. PubMed ID: 32712190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamic test scenario generation method for autonomous vehicles based on conditional generative adversarial imitation learning.
    Jia L; Yang D; Ren Y; Qian C; Feng Q; Sun B; Wang Z
    Accid Anal Prev; 2024 Jan; 194():107279. PubMed ID: 37897956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety evaluation method in multi-logical scenarios for automated vehicles based on naturalistic driving trajectory.
    Zhang P; Zhu B; Zhao J; Fan T; Sun Y
    Accid Anal Prev; 2023 Feb; 180():106926. PubMed ID: 36543079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Framework for Generating Driving Safety Assessment Scenarios for Automated Vehicles.
    Ko W; Park S; Yun J; Park S; Yun I
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dense reinforcement learning for safety validation of autonomous vehicles.
    Feng S; Sun H; Yan X; Zhu H; Zou Z; Shen S; Liu HX
    Nature; 2023 Mar; 615(7953):620-627. PubMed ID: 36949337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous driving testing scenario generation based on in-depth vehicle-to-powered two-wheeler crash data in China.
    Wang X; Peng Y; Xu T; Xu Q; Wu X; Xiang G; Yi S; Wang H
    Accid Anal Prev; 2022 Oct; 176():106812. PubMed ID: 36054982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crash comparison of autonomous and conventional vehicles using pre-crash scenario typology.
    Liu Q; Wang X; Wu X; Glaser Y; He L
    Accid Anal Prev; 2021 Sep; 159():106281. PubMed ID: 34273622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of On-Demand Shared Autonomous Vehicle Deployments Utilizing Reinforcement Learning.
    Meneses-Cime K; Aksun Guvenc B; Guvenc L
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of the intelligent control system of autonomous vehicles based on edge computing.
    Ming G
    PLoS One; 2023; 18(2):e0281294. PubMed ID: 36730359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints.
    Li Z; Yuan S; Yin X; Li X; Tang S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and classification of autonomous vehicle's ambiguous driving scenario.
    Baby T; Ippoliti HŞ; Wintersberger P; Zhang Y; Yoon SH; Lee J; Lee SC
    Accid Anal Prev; 2024 Jun; 200():107501. PubMed ID: 38471236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vehicle Lane-Changing scenario generation using time-series generative adversarial networks with an Adaptative parameter optimization strategy.
    Li Y; Zeng F; Han C; Feng S
    Accid Anal Prev; 2024 Sep; 205():107667. PubMed ID: 38851030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-like Decision Making for Autonomous Vehicles at the Intersection Using Inverse Reinforcement Learning.
    Wu Z; Qu F; Yang L; Gong J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Control Method with Reinforcement Learning for Urban Un-Signalized Intersection in Hybrid Traffic Environment.
    Shi Y; Liu Y; Qi Y; Han Q
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the Impact of Deployments of Autonomous Vehicles and Intelligent Roads on Road Safety in China: A Country-Level Modeling Study.
    Tan H; Zhao F; Song H; Liu Z
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian Regression Analysis of the Effects of Alert Presence and Scenario Criticality on Automated Vehicle Takeover Performance.
    Alambeigi H; McDonald AD
    Hum Factors; 2023 Mar; 65(2):288-305. PubMed ID: 33908795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous Driving Control Based on the Technique of Semantic Segmentation.
    Tsai J; Chang CC; Li T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.