These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 36366153)
1. A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal. Masood F; Sharma M; Mand D; Nesathurai S; Simmons HA; Brunner K; Schalk DR; Sledge JB; Abdullah HA Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366153 [TBL] [Abstract][Full Text] [Related]
2. Neurophysiological Characterization of a Non-Human Primate Model of Traumatic Spinal Cord Injury Utilizing Fine-Wire EMG Electrodes. Masood F; Abdullah HA; Seth N; Simmons H; Brunner K; Sejdic E; Schalk DR; Graham WA; Hoggatt AF; Rosene DL; Sledge JB; Nesathurai S Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357572 [TBL] [Abstract][Full Text] [Related]
3. Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury. Masood F; Farzana M; Nesathurai S; Abdullah HA Proc Inst Mech Eng H; 2020 Sep; 234(9):955-965. PubMed ID: 32605433 [TBL] [Abstract][Full Text] [Related]
4. Electromyography Signal Analysis and Classification using Time-Frequency Representations and Deep Learning. Elbeshbeshy AM; Rushdi MA; El-Metwally SM Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():661-664. PubMed ID: 34891379 [TBL] [Abstract][Full Text] [Related]
5. An Improved Performance of Deep Learning Based on Convolution Neural Network to Classify the Hand Motion by Evaluating Hyper Parameter. Triwiyanto T; Pawana IPA; Purnomo MH IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1678-1688. PubMed ID: 32634104 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders. Fricke C; Alizadeh J; Zakhary N; Woost TB; Bogdan M; Classen J Front Neurol; 2021; 12():666458. PubMed ID: 34093413 [TBL] [Abstract][Full Text] [Related]
7. Classification of EMG signals with CNN features and voting ensemble classifier. Emimal M; Hans WJ; Inbamalar TM; Lindsay NM Comput Methods Biomech Biomed Engin; 2024 Feb; ():1-15. PubMed ID: 38317414 [TBL] [Abstract][Full Text] [Related]
8. Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques. Zia Ur Rehman M; Waris A; Gilani SO; Jochumsen M; Niazi IK; Jamil M; Farina D; Kamavuako EN Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071617 [TBL] [Abstract][Full Text] [Related]
9. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury. Liu J; Li X; Li G; Zhou P Med Eng Phys; 2014 Jul; 36(7):975-80. PubMed ID: 24844608 [TBL] [Abstract][Full Text] [Related]
11. Bathroom activities monitoring for older adults by a wrist-mounted accelerometer using a hybrid deep learning model. Shang M; Zhang Y; Ali Amer AY; D'Haeseleer I; Vanrumste B Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7112-7115. PubMed ID: 34892740 [TBL] [Abstract][Full Text] [Related]
12. Toward a generalizable deep CNN for neural drive estimation across muscles and participants. Wen Y; Kim SJ; Avrillon S; Levine JT; Hug F; Pons JL J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548991 [No Abstract] [Full Text] [Related]
13. Machine Learning-Based Diabetic Neuropathy and Previous Foot Ulceration Patients Detection Using Electromyography and Ground Reaction Forces during Gait. Haque F; Reaz MBI; Chowdhury MEH; Ezeddin M; Kiranyaz S; Alhatou M; Ali SHM; Bakar AAA; Srivastava G Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591196 [TBL] [Abstract][Full Text] [Related]
14. A Deep CNN Framework for Neural Drive Estimation From HD-EMG Across Contraction Intensities and Joint Angles. Wen Y; Kim SJ; Avrillon S; Levine JT; Hug F; Pons JL IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2950-2959. PubMed ID: 36251912 [TBL] [Abstract][Full Text] [Related]
15. Automated classification of nasal polyps in endoscopy video-frames using handcrafted and CNN features. Ay B; Turker C; Emre E; Ay K; Aydin G Comput Biol Med; 2022 Aug; 147():105725. PubMed ID: 35716434 [TBL] [Abstract][Full Text] [Related]
16. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG. Asif AR; Waris A; Gilani SO; Jamil M; Ashraf H; Shafique M; Niazi IK Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183473 [TBL] [Abstract][Full Text] [Related]
17. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks. Wang W; Chen B; Xia P; Hu J; Peng Y Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559 [TBL] [Abstract][Full Text] [Related]
18. Evaluating Convolutional Neural Networks as a Method of EEG-EMG Fusion. Tryon J; Trejos AL Front Neurorobot; 2021; 15():692183. PubMed ID: 34887739 [TBL] [Abstract][Full Text] [Related]
19. Deep learning approach to improve the recognition of hand gesture with multi force variation using electromyography signal from amputees. Triwiyanto T; Pawana IPA; Caesarendra W Med Eng Phys; 2024 Mar; 125():104131. PubMed ID: 38508805 [TBL] [Abstract][Full Text] [Related]
20. A convolutional neural network to identify motor units from high-density surface electromyography signals in real time. Wen Y; Avrillon S; Hernandez-Pavon JC; Kim SJ; Hug F; Pons JL J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33721852 [No Abstract] [Full Text] [Related] [Next] [New Search]