These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36366166)

  • 1. A Lower Bound on the Estimation Variance of Direction-of-Arrival and Skew Angle of a Biaxial Velocity Sensor Suffering from Stochastic Loss of Perpendicularity.
    Nnonyelu CJ; Jiang M; Lundgren J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A uniform circular array of isotropic sensors that stochastically dislocate in three dimensions-The hybrid Cramér-Rao bound of direction-of-arrival estimation.
    Wong KT; Morris ZN; Kitavi DM; Lin TC
    J Acoust Soc Am; 2019 Jul; 146(1):150. PubMed ID: 31370630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A higher-order "figure-8" sensor and an isotropic sensor-For azimuth-elevation bivariate direction finding.
    Muaz M; Wu YI; Wong KT; Su D
    J Acoust Soc Am; 2018 Apr; 143(4):2041. PubMed ID: 29716272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional dislocations in a uniform linear array's isotropic sensors-Direction finding's hybrid Cramér-Rao bound.
    Morris ZN; Wong KT; Wu YI
    J Acoust Soc Am; 2020 May; 147(5):3209. PubMed ID: 32486774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Cramér-Rao Bounds and Sensor Selection for Nonlinear Systems with Uncertain Observations.
    Wang Z; Shen X; Wang P; Zhu Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29621158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum likelihood estimators and Cramér-Rao bound for estimating azimuth and elevation angles using compact arrays.
    Urazghildiiev IR; Hannay D
    J Acoust Soc Am; 2017 Apr; 141(4):2548. PubMed ID: 28464631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Cramér-Rao bound of direction finding, using a triad of cardioid sensors that are perpendicularly oriented and spatially collocated.
    Kitavi DM; Wong KT; Lin TC; Wu YI
    J Acoust Soc Am; 2019 Aug; 146(2):1099. PubMed ID: 31472531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Azimuth-elevation direction finding using a microphone and three orthogonal velocity sensors as a non-collocated subarray.
    Song Y; Wong KT
    J Acoust Soc Am; 2013 Apr; 133(4):1987-95. PubMed ID: 23556569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bivariate direction finding using two perpendicular bi-directional ("figure-8") sensors of (possibly) unequal orders.
    Su D; Wong KT; Wu YI
    J Acoust Soc Am; 2019 Mar; 145(3):1241. PubMed ID: 31067924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal 3D Angle of Arrival Sensor Placement with Gaussian Priors.
    Zhou R; Chen J; Tan W; Yan Q; Cai C
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rules-of-thumb to design a uniform spherical array for direction finding-Its Cramér-Rao bounds' nonlinear dependence on the number of sensors.
    Wong KT; Morris ZN; Nnonyelu CJ
    J Acoust Soc Am; 2019 Feb; 145(2):714. PubMed ID: 30823827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Information-Theoretic Aspects of Location Parameter Estimation under Skew-Normal Settings.
    Contreras-Reyes JE
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Array Design and Directive Sensors for Guided Waves DoA Estimation.
    Dibiase M; Mohammadgholiha M; De Marchi L
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beamforming pointing error of a triaxial velocity sensor under gain uncertainties.
    Lin TC; Wong KT; Cordel MO; Ilao JP
    J Acoust Soc Am; 2016 Sep; 140(3):1675. PubMed ID: 27914385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance bounds for passive sensor arrays operating in a turbulent medium: plane-wave analysis.
    Collier SL; Wilson DK
    J Acoust Soc Am; 2003 May; 113(5):2704-18. PubMed ID: 12765389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground Target Tracking Using an Airborne Angle-Only Sensor with Terrain Uncertainty and Sensor Biases.
    Mitra D; Balachandran A; Tharmarasa R
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios.
    Moreno-Salinas D; Pascoal A; Aranda J
    Sensors (Basel); 2013 Aug; 13(8):10386-417. PubMed ID: 23941912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D TDOA Emitter Localization Using Conic Approximation.
    Dogancay K; Hmam H
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source Localization in Acoustic Sensor Networks via Constrained Least-Squares Optimization Using AOA and GROA Measurements.
    Luo JA; Pan SW; Peng DL; Wang Z; Li YJ
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29565289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy Analysis in Sensor Networks for Asynchronous Positioning Methods.
    Álvarez R; Díez-González J; Alonso E; Fernández-Robles L; Castejón-Limas M; Perez H
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31324032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.