BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36366182)

  • 1. Smartphone Application for Structural Health Monitoring of Bridges.
    Figueiredo E; Moldovan I; Alves P; Rebelo H; Souza L
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smartphone Prospects in Bridge Structural Health Monitoring, a Literature Review.
    Ozer E; Kromanis R
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithms and Techniques for the Structural Health Monitoring of Bridges: Systematic Literature Review.
    Sonbul OS; Rashid M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of Railway Bridge Structural Health Monitoring into the Internet of Things with a Digital Twin: A Case Study.
    Armijo A; Zamora-Sánchez D
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends.
    Jia J; Li Y
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Citizen sensors for SHM: use of accelerometer data from smartphones.
    Feng M; Fukuda Y; Mizuta M; Ozer E
    Sensors (Basel); 2015 Jan; 15(2):2980-98. PubMed ID: 25643056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opportunistic Environmental Sensing with Smartphones: a Critical Review of Current Literature and Applications.
    Nemati E; Batteate C; Jerrett M
    Curr Environ Health Rep; 2017 Sep; 4(3):306-318. PubMed ID: 28879432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Citizen Sensors for SHM: Towards a Crowdsourcing Platform.
    Ozer E; Feng MQ; Feng D
    Sensors (Basel); 2015 Jun; 15(6):14591-614. PubMed ID: 26102490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Energy-Efficient Multi-Tier Architecture for Fall Detection Using Smartphones.
    Guvensan MA; Kansiz AO; Camgoz NC; Turkmen HI; Yavuz AG; Karsligil ME
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphone Motion Sensor-Based Complex Human Activity Identification Using Deep Stacked Autoencoder Algorithm for Enhanced Smart Healthcare System.
    Alo UR; Nweke HF; Teh YW; Murtaza G
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile and highly precise pH-value estimation using common pH paper based on machine learning techniques and supported mobile devices.
    Elsenety MM; Mohamed MBI; Sultan ME; Elsayed BA
    Sci Rep; 2022 Dec; 12(1):22584. PubMed ID: 36585481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing Smartphone-Based Machine Learning in Medical Monitor Data Collection: Seven Segment Digit Recognition.
    Shenoy VN; Aalami OO
    AMIA Annu Symp Proc; 2017; 2017():1564-1570. PubMed ID: 29854226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised Assessment of Balance and Falls Risk Using a Smartphone and Machine Learning.
    Greene BR; McManus K; Ader LGM; Caulfield B
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Real-Time Auto Classification of Smartphone Measured Bridge Vibration Data.
    Shrestha A; Dang J
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors.
    Taher SA; Li J; Jeong JH; Laflamme S; Jo H; Bennett C; Collins WN; Downey ARJ
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms.
    Udrea A; Mitra GD; Costea D; Noels EC; Wakkee M; Siegel DM; de Carvalho TM; Nijsten TEC
    J Eur Acad Dermatol Venereol; 2020 Mar; 34(3):648-655. PubMed ID: 31494983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Machine Learning App for Monitoring Physical Therapy at Home.
    Pereira B; Cunha B; Viana P; Lopes M; Melo ASC; Sousa ASP
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Smartphone-Based Tool for Assessing Parkinsonian Hand Tremor.
    Kostikis N; Hristu-Varsakelis D; Arnaoutoglou M; Kotsavasiloglou C
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1835-42. PubMed ID: 26302523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score.
    Zhan A; Mohan S; Tarolli C; Schneider RB; Adams JL; Sharma S; Elson MJ; Spear KL; Glidden AM; Little MA; Terzis A; Dorsey ER; Saria S
    JAMA Neurol; 2018 Jul; 75(7):876-880. PubMed ID: 29582075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smartphone Sensing of Road Surface Condition and Defect Detection.
    Dong D; Li Z
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.