These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36366239)

  • 1. Monocular Pose Estimation of an Uncooperative Spacecraft Using Convexity Defect Features.
    Han H; Kim H; Bang H
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative Pose Determination of Uncooperative Spacecraft Based on Circle Feature.
    Liu Y; Zhang S; Zhao X
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization-based non-cooperative spacecraft pose estimation using stereo cameras during proximity operations.
    Zhang L; Zhu F; Hao Y; Pan W
    Appl Opt; 2017 May; 56(15):4522-4531. PubMed ID: 29047884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target.
    Yin F; Chou W; Wu Y; Yang G; Xu S
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29597323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rectangular-structure-based pose estimation method for non-cooperative rendezvous.
    Zhang L; Zhu F; Hao Y; Pan W
    Appl Opt; 2018 Jul; 57(21):6164-6173. PubMed ID: 30117997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative pose estimation of uncooperative spacecraft using 2D-3D line correspondences.
    Liu Z; Liu H; Zhu Z; Song J
    Appl Opt; 2021 Aug; 60(22):6479-6486. PubMed ID: 34612883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model-based 3D template matching technique for pose acquisition of an uncooperative space object.
    Opromolla R; Fasano G; Rufino G; Grassi M
    Sensors (Basel); 2015 Mar; 15(3):6360-82. PubMed ID: 25785309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.
    Opromolla R; Fasano G; Rufino G; Grassi M
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28946651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic pose estimation of uncooperative space targets based on monocular vision.
    Zhang Z; Bin W; Kang J; He R; Gao G
    Appl Opt; 2020 Sep; 59(26):7876-7882. PubMed ID: 32976459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion prediction of tumbling uncooperative spacecraft during proximity operations.
    Li P; Wang M; Zhang Z; Zhang B; Wang Y
    Appl Opt; 2024 Mar; 63(8):1952-1960. PubMed ID: 38568634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient pose and motion estimation of non-cooperative target based on LiDAR.
    Li P; Wang M; Fu J; Zhang B
    Appl Opt; 2022 Sep; 61(27):7820-7829. PubMed ID: 36255904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LiDAR-Based Non-Cooperative Tumbling Spacecraft Pose Tracking by Fusing Depth Maps and Point Clouds.
    Zhao G; Xu S; Bo Y
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range.
    Liu L; Zhao G; Bo Y
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27271633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SU-Net: pose estimation network for non-cooperative spacecraft on-orbit.
    Gao H; Li Z; Wang N; Yang J; Dang D
    Sci Rep; 2023 Jul; 13(1):11780. PubMed ID: 37479871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 6-DOF Navigation Method based on Iterative Closest Imaging Point Algorithm.
    Shi S; You Z; Zhao K; Wang Z; Ouyang C; Cao Y
    Sci Rep; 2017 Dec; 7(1):17414. PubMed ID: 29234130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent Spacecraft Visual GNC Architecture With the State-Of-the-Art AI Components for On-Orbit Manipulation.
    Hao Z; Shyam RBA; Rathinam A; Gao Y
    Front Robot AI; 2021; 8():639327. PubMed ID: 34141728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast, robust, and accurate monocular peer-to-peer tracking for surgical navigation.
    Strzeletz S; Hazubski S; Moctezuma JL; Hoppe H
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):479-489. PubMed ID: 31950410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive nonlinear robust relative pose control of spacecraft autonomous rendezvous and proximity operations.
    Sun L; Huo W; Jiao Z
    ISA Trans; 2017 Mar; 67():47-55. PubMed ID: 27989528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spacecraft Homography Pose Estimation with Single-Stage Deep Convolutional Neural Network.
    Chen S; Yang W; Wang W; Mai J; Liang J; Zhang X
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets.
    Albee K; Oestreich C; Specht C; TerĂ¡n Espinoza A; Todd J; Hokaj I; Lampariello R; Linares R
    Front Robot AI; 2021; 8():641338. PubMed ID: 34604314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.