These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 36366240)
1. Deep Reinforcement Learning for the Detection of Abnormal Data in Smart Meters. Sun S; Liu C; Zhu Y; He H; Xiao S; Wen J Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366240 [TBL] [Abstract][Full Text] [Related]
2. A deep reinforcement learning algorithm for the rectangular strip packing problem. Fang J; Rao Y; Shi M PLoS One; 2023; 18(3):e0282598. PubMed ID: 36928505 [TBL] [Abstract][Full Text] [Related]
3. Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty. Kim M; Kim JS; Choi MS; Park JH Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236366 [TBL] [Abstract][Full Text] [Related]
4. Anomaly Detection in Automatic Meter Intelligence System Using Positive Unlabeled Learning and Multiple Symbolic Aggregate Approximation. Nguyen TNA; Vu HT; Dang MT; Kim D; Le AN Big Data; 2023 Jun; 11(3):225-238. PubMed ID: 37036805 [TBL] [Abstract][Full Text] [Related]
5. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space. Zu L; He X; Yang J; Liu L; Wang W Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108 [TBL] [Abstract][Full Text] [Related]
6. Human-level control through deep reinforcement learning. Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670 [TBL] [Abstract][Full Text] [Related]
7. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies. Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125 [TBL] [Abstract][Full Text] [Related]
8. An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning. Yao S; Liu X; Zhang Y; Cui Z Math Biosci Eng; 2022 Jun; 19(9):9258-9290. PubMed ID: 35942758 [TBL] [Abstract][Full Text] [Related]
9. Distributed deep reinforcement learning based on bi-objective framework for multi-robot formation. Li J; Liu Q; Chi G Neural Netw; 2024 Mar; 171():61-72. PubMed ID: 38091765 [TBL] [Abstract][Full Text] [Related]
10. Spatial-temporal recurrent reinforcement learning for autonomous ships. Waltz M; Okhrin O Neural Netw; 2023 Aug; 165():634-653. PubMed ID: 37364473 [TBL] [Abstract][Full Text] [Related]
11. Combining STDP and binary networks for reinforcement learning from images and sparse rewards. Chevtchenko SF; Ludermir TB Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362 [TBL] [Abstract][Full Text] [Related]
12. Improved Robot Path Planning Method Based on Deep Reinforcement Learning. Han H; Wang J; Kuang L; Han X; Xue H Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420785 [TBL] [Abstract][Full Text] [Related]
13. A hybrid cancer prediction based on multi-omics data and reinforcement learning state action reward state action (SARSA). Mohammed MA; Lakhan A; Abdulkareem KH; Garcia-Zapirain B Comput Biol Med; 2023 Mar; 154():106617. PubMed ID: 36753981 [TBL] [Abstract][Full Text] [Related]
14. Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in Autonomous Driving. Yang F; Li X; Liu Q; Li Z; Gao X Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808428 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the landing guidance of a reusable launch vehicle by improving genetic algorithm-based deep reinforcement learning using Hybrid Deterministic-Stochastic algorithm. Nugroho L; Andiarti R; Akmeliawati R; Wijaya SK PLoS One; 2024; 19(2):e0292539. PubMed ID: 38422052 [TBL] [Abstract][Full Text] [Related]
16. The Intelligent Path Planning System of Agricultural Robot via Reinforcement Learning. Yang J; Ni J; Li Y; Wen J; Chen D Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746099 [TBL] [Abstract][Full Text] [Related]
17. Cellular Network Power Allocation Algorithm Based on Deep Reinforcement Learning and Artificial Intelligence. Cao J; Zou X; Xie R; Li Y Comput Intell Neurosci; 2022; 2022():9456611. PubMed ID: 35785103 [TBL] [Abstract][Full Text] [Related]
18. Modular deep reinforcement learning from reward and punishment for robot navigation. Wang J; Elfwing S; Uchibe E Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526 [TBL] [Abstract][Full Text] [Related]
19. Control and Optimisation of Power Grids Using Smart Meter Data: A Review. Chen Z; Amani AM; Yu X; Jalili M Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850711 [TBL] [Abstract][Full Text] [Related]
20. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning. Chen Z; Luo B; Hu T; Xu X Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]