These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36366573)

  • 1. Host Cell Entry and Neutralization Sensitivity of SARS-CoV-2 Lineages B.1.620 and R.1.
    Sidarovich A; Krüger N; Rocha C; Graichen L; Kempf A; Nehlmeier I; Lier M; Cossmann A; Stankov MV; Schulz SR; Behrens GMN; Jäck HM; Pöhlmann S; Hoffmann M
    Viruses; 2022 Nov; 14(11):. PubMed ID: 36366573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization.
    Kim Y; Gaudreault NN; Meekins DA; Perera KD; Bold D; Trujillo JD; Morozov I; McDowell CD; Chang KO; Richt JA
    Microbiol Spectr; 2022 Jun; 10(3):e0178921. PubMed ID: 35638818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion.
    Ren W; Ju X; Gong M; Lan J; Yu Y; Long Q; Kenney DJ; O'Connell AK; Zhang Y; Zhong J; Zhong G; Douam F; Wang X; Huang A; Zhang R; Ding Q
    mBio; 2022 Apr; 13(2):e0009922. PubMed ID: 35266815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for an ACE2-Independent Entry Pathway That Can Protect from Neutralization by an Antibody Used for COVID-19 Therapy.
    Hoffmann M; Sidarovich A; Arora P; Krüger N; Nehlmeier I; Kempf A; Graichen L; Winkler MS; Niemeyer D; Goffinet C; Drosten C; Schulz S; Jäck HM; Pöhlmann S
    mBio; 2022 Jun; 13(3):e0036422. PubMed ID: 35467423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of Immune Evasion and Host Range Expansion by the SARS-CoV-2 B.1.1.529 (Omicron) Variant.
    Ren W; Zhang Y; Rao J; Wang Z; Lan J; Liu K; Zhang X; Hu X; Yang C; Zhong G; Zhang R; Wang X; Shan C; Ding Q
    mBio; 2023 Apr; 14(2):e0041623. PubMed ID: 37010428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
    Hoffmann M; Kleine-Weber H; Schroeder S; Krüger N; Herrler T; Erichsen S; Schiergens TS; Herrler G; Wu NH; Nitsche A; Müller MA; Drosten C; Pöhlmann S
    Cell; 2020 Apr; 181(2):271-280.e8. PubMed ID: 32142651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies.
    Yi C; Sun X; Ye J; Ding L; Liu M; Yang Z; Lu X; Zhang Y; Ma L; Gu W; Qu A; Xu J; Shi Z; Ling Z; Sun B
    Cell Mol Immunol; 2020 Jun; 17(6):621-630. PubMed ID: 32415260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.
    Pinto D; Park YJ; Beltramello M; Walls AC; Tortorici MA; Bianchi S; Jaconi S; Culap K; Zatta F; De Marco A; Peter A; Guarino B; Spreafico R; Cameroni E; Case JB; Chen RE; Havenar-Daughton C; Snell G; Telenti A; Virgin HW; Lanzavecchia A; Diamond MS; Fink K; Veesler D; Corti D
    Nature; 2020 Jul; 583(7815):290-295. PubMed ID: 32422645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding.
    Byrnes JR; Zhou XX; Lui I; Elledge SK; Glasgow JE; Lim SA; Loudermilk RP; Chiu CY; Wang TT; Wilson MR; Leung KK; Wells JA
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32938700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness.
    Sui J; Deming M; Rockx B; Liddington RC; Zhu QK; Baric RS; Marasco WA
    J Virol; 2014 Dec; 88(23):13769-80. PubMed ID: 25231316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization.
    Hoffmann M; Zhang L; Krüger N; Graichen L; Kleine-Weber H; Hofmann-Winkler H; Kempf A; Nessler S; Riggert J; Winkler MS; Schulz S; Jäck HM; Pöhlmann S
    Cell Rep; 2021 Apr; 35(3):109017. PubMed ID: 33857422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoluciferase-based cell fusion assay for rapid and high-throughput assessment of SARS-CoV-2-neutralizing antibodies in patient samples.
    Meyrath M; Szpakowska M; Plesseria JM; Domingues O; Langlet J; Weber B; Krüger R; Ollert M; Chevigné A;
    Methods Enzymol; 2022; 675():351-381. PubMed ID: 36220277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spike-ACE2 binding assay: An in vitro platform for evaluating vaccination efficacy and for screening SARS-CoV-2 inhibitors and neutralizing antibodies.
    Zhang S; Gao C; Das T; Luo S; Tang H; Yao X; Cho CY; Lv J; Maravillas K; Jones V; Chen X; Huang R
    J Immunol Methods; 2022 Apr; 503():113244. PubMed ID: 35218866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human neutralizing antibodies elicited by SARS-CoV-2 infection.
    Ju B; Zhang Q; Ge J; Wang R; Sun J; Ge X; Yu J; Shan S; Zhou B; Song S; Tang X; Yu J; Lan J; Yuan J; Wang H; Zhao J; Zhang S; Wang Y; Shi X; Liu L; Zhao J; Wang X; Zhang Z; Zhang L
    Nature; 2020 Aug; 584(7819):115-119. PubMed ID: 32454513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Basis of a Human Neutralizing Antibody Specific to the SARS-CoV-2 Spike Protein Receptor-Binding Domain.
    Yang M; Li J; Huang Z; Li H; Wang Y; Wang X; Kang S; Huang X; Wu C; Liu T; Jia Z; Liang J; Yuan X; He S; Chen X; Zhou Z; Chen Q; Liu S; Li J; Zheng H; Liu X; Li K; Yao X; Lang B; Liu L; Liao HX; Chen S
    Microbiol Spectr; 2021 Oct; 9(2):e0135221. PubMed ID: 34643438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies: a review].
    Chen Y; Lin J; Zheng P; Cao M; Jin T
    Sheng Wu Gong Cheng Xue Bao; 2022 Sep; 38(9):3173-3193. PubMed ID: 36151792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation.
    Seydoux E; Homad LJ; MacCamy AJ; Parks KR; Hurlburt NK; Jennewein MF; Akins NR; Stuart AB; Wan YH; Feng J; Whaley RE; Singh S; Boeckh M; Cohen KW; McElrath MJ; Englund JA; Chu HY; Pancera M; McGuire AT; Stamatatos L
    Immunity; 2020 Jul; 53(1):98-105.e5. PubMed ID: 32561270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.
    Walls AC; Park YJ; Tortorici MA; Wall A; McGuire AT; Veesler D
    Cell; 2020 Apr; 181(2):281-292.e6. PubMed ID: 32155444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition.
    Dieterle ME; Haslwanter D; Bortz RH; Wirchnianski AS; Lasso G; Vergnolle O; Abbasi SA; Fels JM; Laudermilch E; Florez C; Mengotto A; Kimmel D; Malonis RJ; Georgiev G; Quiroz J; Barnhill J; Pirofski LA; Daily JP; Dye JM; Lai JR; Herbert AS; Chandran K; Jangra RK
    Cell Host Microbe; 2020 Sep; 28(3):486-496.e6. PubMed ID: 32738193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.