These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36366632)
1. Single-model multi-tasks deep learning network for recognition and quantitation of surface-enhanced Raman spectroscopy. Xie L; Shen Y; Zhang M; Zhong Y; Lu Y; Yang L; Li Z Opt Express; 2022 Nov; 30(23):41580-41589. PubMed ID: 36366632 [TBL] [Abstract][Full Text] [Related]
2. Deep Learning-Based Spectral Extraction for Improving the Performance of Surface-Enhanced Raman Spectroscopy Analysis on Multiplexed Identification and Quantitation. Zhang J; Xin PL; Wang XY; Chen HY; Li DW J Phys Chem A; 2022 Apr; 126(14):2278-2285. PubMed ID: 35380835 [TBL] [Abstract][Full Text] [Related]
3. Pushing the Limits of Surface-Enhanced Raman Spectroscopy (SERS) with Deep Learning: Identification of Multiple Species with Closely Related Molecular Structures. Lebrun A; Fortin H; Fontaine N; Fillion D; Barbier O; Boudreau D Appl Spectrosc; 2022 May; 76(5):609-619. PubMed ID: 35081756 [TBL] [Abstract][Full Text] [Related]
4. Multi-scale representation of surface-enhanced Raman spectroscopy data for deep learning-based liver cancer detection. Yang Y; Gao X; Zhang H; Chao F; Jiang H; Huang J; Lin J Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123764. PubMed ID: 38134653 [TBL] [Abstract][Full Text] [Related]
5. Identification of Bacterial Pathogens at Genus and Species Levels through Combination of Raman Spectrometry and Deep-Learning Algorithms. Wang L; Tang JW; Li F; Usman M; Wu CY; Liu QH; Kang HQ; Liu W; Gu B Microbiol Spectr; 2022 Dec; 10(6):e0258022. PubMed ID: 36314973 [TBL] [Abstract][Full Text] [Related]
6. Deep learning networks for the recognition and quantitation of surface-enhanced Raman spectroscopy. Weng S; Yuan H; Zhang X; Li P; Zheng L; Zhao J; Huang L Analyst; 2020 Jul; 145(14):4827-4835. PubMed ID: 32515435 [TBL] [Abstract][Full Text] [Related]
7. Diagnosis of urogenital cancer combining deep learning algorithms and surface-enhanced Raman spectroscopy based on small extracellular vesicles. Qian H; Shao X; Zhang H; Wang Y; Liu S; Pan J; Xue W Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121603. PubMed ID: 35868057 [TBL] [Abstract][Full Text] [Related]
8. Deep Learning-Assisted Surface-Enhanced Raman Scattering for Rapid Bacterial Identification. Tseng YM; Chen KL; Chao PH; Han YY; Huang NT ACS Appl Mater Interfaces; 2023 Jun; 15(22):26398-26406. PubMed ID: 37216401 [TBL] [Abstract][Full Text] [Related]
9. Raman spectrum combined with deep learning for precise recognition of Carbapenem-resistant Enterobacteriaceae. Wang W; Wang X; Huang Y; Zhao Y; Fang X; Cong Y; Tang Z; Chen L; Zhong J; Li R; Guo Z; Zhang Y; Li S Anal Bioanal Chem; 2024 Apr; 416(10):2465-2478. PubMed ID: 38383664 [TBL] [Abstract][Full Text] [Related]
10. Rapid identification of pathogens by using surface-enhanced Raman spectroscopy and multi-scale convolutional neural network. Ding J; Lin Q; Zhang J; Young GM; Jiang C; Zhong Y; Zhang J Anal Bioanal Chem; 2021 Jun; 413(14):3801-3811. PubMed ID: 33961103 [TBL] [Abstract][Full Text] [Related]
11. Rapid Identification of Drug Mechanisms with Deep Learning-Based Multichannel Surface-Enhanced Raman Spectroscopy. Sun J; Lai W; Zhao J; Xue J; Zhu T; Xiao M; Man T; Wan Y; Pei H; Li L ACS Sens; 2024 Aug; 9(8):4227-4235. PubMed ID: 39138903 [TBL] [Abstract][Full Text] [Related]
12. Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning-based spectroscopic analysis. Fu Q; Zhang Y; Wang P; Pi J; Qiu X; Guo Z; Huang Y; Zhao Y; Li S; Xu J Anal Bioanal Chem; 2021 Dec; 413(30):7401-7410. PubMed ID: 34673992 [TBL] [Abstract][Full Text] [Related]
13. Recognition of big data mixed Raman spectra based on deep learning with smartphone as Raman analyzer. Liang J; Mu T Electrophoresis; 2020 Sep; 41(16-17):1413-1417. PubMed ID: 31811819 [TBL] [Abstract][Full Text] [Related]
14. Raman spectroscopy combined with deep learning for rapid detection of melanoma at the single cell level. Qiu X; Wu X; Fang X; Fu Q; Wang P; Wang X; Li S; Li Y Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():122029. PubMed ID: 36323090 [TBL] [Abstract][Full Text] [Related]
15. Deep learning approach to overcome signal fluctuations in SERS for efficient On-Site trace explosives detection. Beeram R; Vendamani VS; Soma VR Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122218. PubMed ID: 36512965 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning-Assisted Sampling of Surfance-Enhanced Raman Scattering (SERS) Substrates Improve Data Collection Efficiency. Rojalin T; Antonio D; Kulkarni A; Carney RP Appl Spectrosc; 2022 Apr; 76(4):485-495. PubMed ID: 34342493 [TBL] [Abstract][Full Text] [Related]
17. Dynamic surface-enhanced Raman spectroscopy and Chemometric methods for fast detection and intelligent identification of methamphetamine and 3, 4-Methylenedioxy methamphetamine in human urine. Weng S; Dong R; Zhu Z; Zhang D; Zhao J; Huang L; Liang D Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():1-7. PubMed ID: 28783586 [TBL] [Abstract][Full Text] [Related]
19. Label-free detection of trace level zearalenone in corn oil by surface-enhanced Raman spectroscopy (SERS) coupled with deep learning models. Zhu J; Jiang X; Rong Y; Wei W; Wu S; Jiao T; Chen Q Food Chem; 2023 Jul; 414():135705. PubMed ID: 36808025 [TBL] [Abstract][Full Text] [Related]
20. Setting Up a Surface-Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free Discrimination of Tumor Suppressor Genes. Shi H; Wang H; Meng X; Chen R; Zhang Y; Su Y; He Y Anal Chem; 2018 Dec; 90(24):14216-14221. PubMed ID: 30456938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]