These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36366635)

  • 1. The U-Net-based phase-only CGH using the two-dimensional phase grating.
    Liu X; Yan X; Wang X
    Opt Express; 2022 Nov; 30(23):41624-41643. PubMed ID: 36366635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-only hologram generated by a convolutional neural network trained using low-frequency mixed noise.
    Wang X; Liu X; Jing T; Li P; Jiang X; Liu Q; Yan X
    Opt Express; 2022 Sep; 30(20):35189-35201. PubMed ID: 36258476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytic Design of Segmented Phase Grating for Optical Sensing in High-Precision Alignment System.
    Yang G; Li J; Wang Y; Ding M; Zhong L
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffraction model-driven neural network trained using hybrid domain loss for real-time and high-quality computer-generated holography.
    Zheng H; Peng J; Wang Z; Shui X; Yu Y; Xia X
    Opt Express; 2023 Jun; 31(12):19931-19944. PubMed ID: 37381398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed computer-generated holography using an autoencoder-based deep neural network.
    Wu J; Liu K; Sui X; Cao L
    Opt Lett; 2021 Jun; 46(12):2908-2911. PubMed ID: 34129571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment mark optimization for improving signal-to-noise ratio of wafer alignment signal.
    Du J; Dai F; Wang X
    Appl Opt; 2019 Jan; 58(1):9-14. PubMed ID: 30645505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time 4K computer-generated hologram based on encoding conventional neural network with learned layered phase.
    Zhong C; Sang X; Yan B; Li H; Xie X; Qin X; Chen S
    Sci Rep; 2023 Nov; 13(1):19372. PubMed ID: 37938607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructed quality improvement with a stochastic gradient descent optimization algorithm for a spherical hologram.
    Pan Y; Wang J; Wu Y; Peng H; Yang H; Chen C
    Appl Opt; 2022 Jun; 61(17):5341-5349. PubMed ID: 36256220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-task convolutional neural network based on the combination of the U-Net and a diffraction propagation model for phase hologram design with suppressed speckle noise.
    Sun X; Mu X; Xu C; Pang H; Deng Q; Zhang K; Jiang H; Du J; Yin S; Du C
    Opt Express; 2022 Jan; 30(2):2646-2658. PubMed ID: 35209400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range.
    Jesacher A; Bernet S; Ritsch-Marte M
    Opt Express; 2014 Jul; 22(14):17590-9. PubMed ID: 25090573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier-inspired neural module for real-time and high-fidelity computer-generated holography.
    Dong Z; Xu C; Ling Y; Li Y; Su Y
    Opt Lett; 2023 Feb; 48(3):759-762. PubMed ID: 36723582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep neural network for multi-depth hologram generation and its training strategy.
    Lee J; Jeong J; Cho J; Yoo D; Lee B; Lee B
    Opt Express; 2020 Aug; 28(18):27137-27154. PubMed ID: 32906972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of speckle noise in holograms with redundancy.
    Gerritsen HJ; Hannan WJ; Ramberg EG
    Appl Opt; 1968 Nov; 7(11):2301-11. PubMed ID: 20068986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital holography without a dark room environment: extraction of interference fringes by using deep learning.
    Nagahama Y
    Appl Opt; 2023 Nov; 62(33):8911-8917. PubMed ID: 38038037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Multi-Depth 3D Holograms Using a Fully Convolutional Neural Network.
    Yan X; Liu X; Li J; Zhang Y; Chang H; Jing T; Hu H; Qu Q; Wang X; Jiang X
    Adv Sci (Weinh); 2024 May; ():e2308886. PubMed ID: 38725135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An azimuthally-modified linear phase grating: Generation of varied radial carpet beams over different diffraction orders with controlled intensity sharing among the generated beams.
    Rasouli S; Khazaei AM
    Sci Rep; 2019 Aug; 9(1):12472. PubMed ID: 31462671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of undesired diffraction orders of binary phase holograms.
    Maurer C; Schwaighofer A; Jesacher A; Bernet S; Ritsch-Marte M
    Appl Opt; 2008 Aug; 47(22):3994-8. PubMed ID: 18670552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution to the issue of high-order diffraction images for cylindrical computer-generated holograms.
    Zhou J; Jiang L; Yu G; Wang J; Wu Y; Wang J
    Opt Express; 2024 Apr; 32(9):14978-14993. PubMed ID: 38859160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Text information security protection method based on computer-generated holograms.
    Wang Q; Ge A; Chen X; Wu J; Liu S; Zhu D
    Appl Opt; 2024 May; 63(15):4165-4174. PubMed ID: 38856510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffractive distortion of a pixelated computer-generated hologram with oblique illumination.
    Mu CT; Chen CH
    Appl Opt; 2020 Aug; 59(24):7153-7159. PubMed ID: 32902477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.