These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36366637)

  • 1. Chaos single photon LIDAR and the ranging performance analysis based on Monte Carlo simulation.
    Hu Z; Jiang C; Zhu J; Qiao Z; Xie T; Wang C; Yuan Y; Ye Z; Wang Y
    Opt Express; 2022 Nov; 30(23):41658-41670. PubMed ID: 36366637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the ranging performance of chaos LiDAR.
    Hu Z; Zhu J; Jiang C; Hu T; Jiang Y; Yuan Y; Ye Z; Wang Y
    Appl Opt; 2023 May; 62(14):3598-3605. PubMed ID: 37706975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon Counting LIDAR Based on True Random Coding.
    Yu Y; Liu B; Chen Z; Hua K
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32545300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the performance of pseudo-random single photon counting ranging Lidar.
    Yu Y; Liu B; Chen Z
    Appl Opt; 2018 Sep; 57(27):7733-7739. PubMed ID: 30462035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical ranging performance model and range walk error correction for photon-counting lidars with multiple detectors.
    Ma Y; Li S; Zhang W; Zhang Z; Liu R; Wang XH
    Opt Express; 2018 Jun; 26(12):15924-15934. PubMed ID: 30114846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Entropy-Based Anti-Noise Method for Reducing Ranging Error in Photon Counting Lidar.
    Huang M; Zhang Z; Xie J; Li J; Zhao Y
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal restoration method for restraining the range walk error of Geiger-mode avalanche photodiode lidar in acquiring a merged three-dimensional image.
    Xu L; Zhang Y; Zhang Y; Wu L; Yang C; Yang X; Zhang Z; Zhao Y
    Appl Opt; 2017 Apr; 56(11):3059-3063. PubMed ID: 28414363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Performance of Pseudo-Random Single-Photon Counting Ranging Lidar.
    Yu Y; Liu B; Chen Z
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restraint of range walk error in a Geiger-mode avalanche photodiode lidar to acquire high-precision depth and intensity information.
    Xu L; Zhang Y; Zhang Y; Yang C; Yang X; Zhao Y
    Appl Opt; 2016 Mar; 55(7):1683-7. PubMed ID: 26974630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D pulsed chaos lidar system.
    Cheng CH; Chen CY; Chen JD; Pan DK; Ting KT; Lin FY
    Opt Express; 2018 Apr; 26(9):12230-12241. PubMed ID: 29716136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ranging performance models based on negative-binomial (NB) distribution for photon-counting lidars.
    Li S; Zhang Z; Ma Y; Zeng H; Zhao P; Zhang W
    Opt Express; 2019 Jun; 27(12):A861-A877. PubMed ID: 31252861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Error performance analysis of a non-ideal photon counting array receiver system for optical wireless communication.
    Wang C; Wang J; Xu Z; Wang R; Zhao J; Wei Y
    Appl Opt; 2018 Aug; 57(23):6651-6656. PubMed ID: 30129608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes.
    Buchner A; Hadrath S; Burkard R; Kolb FM; Ruskowski J; Ligges M; Grabmaier A
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the Number of Cumulative Pulses Based on the Photon Statistical Entropy Evaluation in Photon-Counting LiDAR.
    Huang M; Zhang Z; Cen L; Li J; Xie J; Zhao Y
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Range accuracy of photon heterodyne detection with laser pulse based on Geiger-mode APD.
    Luo H; Yuan X; Zeng Y
    Opt Express; 2013 Aug; 21(16):18983-93. PubMed ID: 23938813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjustable higher SNR and long-range 3D-imaging cluster lidar based on a coded full-waveform technique.
    Yang X; Hao L; Wang Y
    Appl Opt; 2019 Jun; 58(17):4671-4677. PubMed ID: 31251287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating random errors due to shot noise in backscatter lidar observations.
    Liu Z; Hunt W; Vaughan M; Hostetler C; McGill M; Powell K; Winker D; Hu Y
    Appl Opt; 2006 Jun; 45(18):4437-47. PubMed ID: 16778954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection efficiency for underwater coaxial photon-counting lidar.
    Hua K; Liu B; Fang L; Wang H; Chen Z; Yu Y
    Appl Opt; 2020 Mar; 59(9):2797-2809. PubMed ID: 32225830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics.
    Gatt P; Johnson S; Nichols T
    Appl Opt; 2009 Jun; 48(17):3261-76. PubMed ID: 19516383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Probabilistic Approach to Estimating Allowed SNR Values for Automotive LiDARs in "Smart Cities" under Various External Influences.
    Meshcheryakov R; Iskhakov A; Mamchenko M; Romanova M; Uvaysov S; Amirgaliyev Y; Gromaszek K
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.