These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36366717)

  • 21. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity.
    Wang H; Zhang Y; Ji C; Zhang C; Liu D; Zhang Z; Lu Z; Tan J; Guo LJ
    Adv Sci (Weinh); 2019 Oct; 6(19):1901320. PubMed ID: 31592425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers.
    Aydin K; Ferry VE; Briggs RM; Atwater HA
    Nat Commun; 2011 Nov; 2():517. PubMed ID: 22044996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.
    Choi M; Kang G; Shin D; Barange N; Lee CW; Ko DH; Kim K
    ACS Appl Mater Interfaces; 2016 May; 8(20):12997-3008. PubMed ID: 27160410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Material-Versatile Ultrabroadband Light Absorber with Self-Aggregated Multiscale Funnel Structures.
    Ryu Y; Kim C; Ahn J; Urbas AM; Park W; Kim K
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29884-29892. PubMed ID: 30107113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.
    Liu D; Yu H; Duan Y; Li Q; Xuan Y
    Sci Rep; 2016 Sep; 6():32515. PubMed ID: 27582317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transparent absorber composed of two stacked ultrathin metal films perforated with small holes.
    Wu G; Xiao W; Wang Z; Zhang Y; Huang C
    Opt Express; 2022 Jun; 30(13):22922-22930. PubMed ID: 36224982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays.
    Li C; Xia L; Gao H; Shi R; Sun C; Shi H; Du C
    Opt Express; 2012 Sep; 20 Suppl 5():A589-96. PubMed ID: 23037526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient, perfect, large angular and ultrawideband solar energy absorber for UV to MIR range.
    Patel SK; Udayakumar AK; Mahendran G; Vasudevan B; Surve J; Parmar J
    Sci Rep; 2022 Oct; 12(1):18044. PubMed ID: 36302877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wide-angle and broadband solar absorber made using highly efficient large-area fabrication strategy.
    Hou W; Yang F; Chen Z; Dong J; Jiang S
    Opt Express; 2022 Jan; 30(3):4424-4433. PubMed ID: 35209680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic wavy surface for ultrathin semiconductor black absorbers.
    Tang P; Liu G; Liu X; Fu G; Liu Z; Wang J
    Opt Express; 2020 Sep; 28(19):27764-27773. PubMed ID: 32988062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.
    Jariwala D; Davoyan AR; Tagliabue G; Sherrott MC; Wong J; Atwater HA
    Nano Lett; 2016 Sep; 16(9):5482-7. PubMed ID: 27563733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-Scale, Bandwidth-Adjustable, Visible Absorbers by Evaporation and Annealing Process.
    Long X; Yue W; Su Y; Chen W; Li L
    Nanoscale Res Lett; 2019 Feb; 14(1):48. PubMed ID: 30756198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers.
    Anguita JV; Ahmad M; Haq S; Allam J; Silva SR
    Sci Adv; 2016 Feb; 2(2):e1501238. PubMed ID: 26933686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Ultrathin Liquid Junction Photovoltaics Based on Transition Metal Dichalcogenides.
    Wang L; Sambur JB
    Nano Lett; 2019 May; 19(5):2960-2967. PubMed ID: 30913393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoanode current of large-area MoS₂ ultrathin nanosheets with vertically mesh-shaped structure on indium tin oxide.
    Xu X; Hu J; Yin Z; Xu C
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5983-7. PubMed ID: 24684311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semiconductor-nanoantenna-assisted solar absorber for ultra-broadband light trapping.
    Li Y; Liu Z; Pan P; Liu X; Fu G; Liu Z; Luo H; Liu G
    Nanoscale Res Lett; 2020 Apr; 15(1):76. PubMed ID: 32270307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transparent Ultrathin Metal Electrode with Microcavity Configuration for Highly Efficient TCO-Free Perovskite Solar Cells.
    He F; You H; Li X; Chen D; Pang S; Zhu W; Xi H; Zhang J; Zhang C
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications.
    Buencuerpo J; Munioz-Camuniez LE; Dotor ML; Postigo PA
    Opt Express; 2012 Jul; 20 Suppl 4():A452-64. PubMed ID: 22828614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.
    Zhou L; Yu X; Zhu J
    Nano Lett; 2014 Feb; 14(2):1093-8. PubMed ID: 24443983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.