These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36366860)

  • 41. Predicting Visual Fields From Optical Coherence Tomography via an Ensemble of Deep Representation Learners.
    Lazaridis G; Montesano G; Afgeh SS; Mohamed-Noriega J; Ourselin S; Lorenzi M; Garway-Heath DF
    Am J Ophthalmol; 2022 Jun; 238():52-65. PubMed ID: 34998718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of Deep Learning for Automated Detection of Polypoidal Choroidal Vasculopathy in Spectral Domain Optical Coherence Tomography.
    Wongchaisuwat P; Thamphithak R; Jitpukdee P; Wongchaisuwat N
    Transl Vis Sci Technol; 2022 Oct; 11(10):16. PubMed ID: 36219163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.
    Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K
    Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma.
    Hashimoto Y; Asaoka R; Kiwaki T; Sugiura H; Asano S; Murata H; Fujino Y; Matsuura M; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Br J Ophthalmol; 2021 Apr; 105(4):507-513. PubMed ID: 32593978
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Classifying neovascular age-related macular degeneration with a deep convolutional neural network based on optical coherence tomography images.
    Han J; Choi S; Park JI; Hwang JS; Han JM; Lee HJ; Ko J; Yoon J; Hwang DD
    Sci Rep; 2022 Feb; 12(1):2232. PubMed ID: 35140257
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visual Field Inference From Optical Coherence Tomography Using Deep Learning Algorithms: A Comparison Between Devices.
    Shin J; Kim S; Kim J; Park K
    Transl Vis Sci Technol; 2021 Jun; 10(7):4. PubMed ID: 34086043
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma.
    Sreejith Kumar AJ; Chong RS; Crowston JG; Chua J; Bujor I; Husain R; Vithana EN; Girard MJA; Ting DSW; Cheng CY; Aung T; Popa-Cherecheanu A; Schmetterer L; Wong D
    JAMA Ophthalmol; 2022 Oct; 140(10):974-981. PubMed ID: 36048435
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydradermabrasion through the lens of Line-Field Confocal Optical Coherence Tomography.
    Razi S; Truong TM; Khan S; Sanabria B; Rao B
    Skin Res Technol; 2024 Apr; 30(4):e13684. PubMed ID: 38558475
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep learning differentiates between healthy and diabetic mouse ears from optical coherence tomography angiography images.
    Pfister M; Stegmann H; Schützenberger K; Schäfer BJ; Hohenadl C; Schmetterer L; Gröschl M; Werkmeister RM
    Ann N Y Acad Sci; 2021 Aug; 1497(1):15-26. PubMed ID: 33638189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical coherence tomography imaging of erythematotelangiectatic rosacea during treatment with brimonidine topical gel 0.33%: a potential method for treatment outcome assessment.
    Urban J; Siripunvarapon AH; Meekings A; Kalowitz A; Markowitz O
    J Drugs Dermatol; 2014 Jul; 13(7):821-6. PubMed ID: 25007365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep learning algorithms to isolate and quantify the structures of the anterior segment in optical coherence tomography images.
    Pham TH; Devalla SK; Ang A; Soh ZD; Thiery AH; Boote C; Cheng CY; Girard MJA; Koh V
    Br J Ophthalmol; 2021 Sep; 105(9):1231-1237. PubMed ID: 32980820
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of Deep Learning Methods for Binarization of the Choroid in Optical Coherence Tomography Images.
    Muller J; Alonso-Caneiro D; Read SA; Vincent SJ; Collins MJ
    Transl Vis Sci Technol; 2022 Feb; 11(2):23. PubMed ID: 35157030
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Attention-based deep learning system for automated diagnoses of age-related macular degeneration in optical coherence tomography images.
    Yan Y; Jin K; Gao Z; Huang X; Wang F; Wang Y; Ye J
    Med Phys; 2021 Sep; 48(9):4926-4934. PubMed ID: 34042194
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
    Thompson AC; Jammal AA; Berchuck SI; Mariottoni EB; Medeiros FA
    JAMA Ophthalmol; 2020 Apr; 138(4):333-339. PubMed ID: 32053142
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Foveal avascular zone segmentation in optical coherence tomography angiography images using a deep learning approach.
    Mirshahi R; Anvari P; Riazi-Esfahani H; Sardarinia M; Naseripour M; Falavarjani KG
    Sci Rep; 2021 Jan; 11(1):1031. PubMed ID: 33441825
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep learning-based image enhancement in optical coherence tomography by exploiting interference fringe.
    Lee W; Nam HS; Seok JY; Oh WY; Kim JW; Yoo H
    Commun Biol; 2023 Apr; 6(1):464. PubMed ID: 37117279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.