These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 36366868)
1. Enhancing tellurite and selenite bioconversions by overexpressing a methyltransferase from Aromatoleum sp. CIB. Alonso-Fernandes E; Fernández-Llamosas H; Cano I; Serrano-Pelejero C; Castro L; Díaz E; Carmona M Microb Biotechnol; 2023 May; 16(5):915-930. PubMed ID: 36366868 [TBL] [Abstract][Full Text] [Related]
2. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Zonaro E; Piacenza E; Presentato A; Monti F; Dell'Anna R; Lampis S; Vallini G Microb Cell Fact; 2017 Nov; 16(1):215. PubMed ID: 29183326 [TBL] [Abstract][Full Text] [Related]
4. Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions. Maltman C; Yurkov V Arch Microbiol; 2018 Dec; 200(10):1411-1417. PubMed ID: 30039321 [TBL] [Abstract][Full Text] [Related]
5. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres. Bajaj M; Winter J Microb Cell Fact; 2014 Nov; 13():168. PubMed ID: 25425453 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous bioreduction of tellurite and selenite by Yarrowia lipolytica, Trichosporon cutaneum, and their co-culture along with characterization of biosynthesized Te-Se nanoparticles. Hosseini F; Hadian M; Lashani E; Moghimi H Microb Cell Fact; 2023 Sep; 22(1):193. PubMed ID: 37749532 [TBL] [Abstract][Full Text] [Related]
7. Formation of Se(0), Te(0), and Se(0)-Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor. Wadgaonkar SL; Mal J; Nancharaiah YV; Maheshwari NO; Esposito G; Lens PNL Appl Microbiol Biotechnol; 2018 Mar; 102(6):2899-2911. PubMed ID: 29399711 [TBL] [Abstract][Full Text] [Related]
8. Selenite and tellurite reduction by Aspergillus niger fungal pellets using lignocellulosic hydrolysate. Sinharoy A; Lens PNL J Hazard Mater; 2022 Sep; 437():129333. PubMed ID: 35728327 [TBL] [Abstract][Full Text] [Related]
9. NAD(P)H-dependent thioredoxin-disulfide reductase TrxR is essential for tellurite and selenite reduction and resistance in Bacillus sp. Y3. Yasir M; Zhang Y; Xu Z; Luo M; Wang G FEMS Microbiol Ecol; 2020 Sep; 96(9):. PubMed ID: 32589222 [TBL] [Abstract][Full Text] [Related]
10. Biogenic synthesis of selenium and tellurium nanoparticles by marine bacteria and their biological activity. Beleneva IA; Kharchenko UV; Kukhlevsky AD; Boroda AV; Izotov NV; Gnedenkov AS; Egorkin VS World J Microbiol Biotechnol; 2022 Aug; 38(11):188. PubMed ID: 35972591 [TBL] [Abstract][Full Text] [Related]
11. Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Tan Y; Yao R; Wang R; Wang D; Wang G; Zheng S Microb Cell Fact; 2016 Sep; 15(1):157. PubMed ID: 27630128 [TBL] [Abstract][Full Text] [Related]
12. Reduction of selenite and tellurite by a highly metal-tolerant marine bacterium. Cheng M; Liang L; Sun Y; Zhang H; Hu X Int Microbiol; 2024 Feb; 27(1):203-212. PubMed ID: 37261581 [TBL] [Abstract][Full Text] [Related]
13. Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria? Kessi J; Turner RJ; Zannoni D Biol Res; 2022 Apr; 55(1):17. PubMed ID: 35382884 [TBL] [Abstract][Full Text] [Related]
14. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Lampis S; Zonaro E; Bertolini C; Bernardi P; Butler CS; Vallini G Microb Cell Fact; 2014 Mar; 13(1):35. PubMed ID: 24606965 [TBL] [Abstract][Full Text] [Related]
15. Selenite bioreduction with concomitant green synthesis of selenium nanoparticles by a selenite resistant EPS and siderophore producing terrestrial bacterium. Yadav P; Pandey S; Dubey SK Biometals; 2023 Oct; 36(5):1027-1045. PubMed ID: 37119424 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous bioremediation of phenol and tellurite by Lysinibacillus sp. EBL303 and characterization of biosynthesized Te nanoparticles. Hosseini F; Lashani E; Moghimi H Sci Rep; 2023 Jan; 13(1):1243. PubMed ID: 36690691 [TBL] [Abstract][Full Text] [Related]
17. Tellurite biotransformation and detoxification by Shewanella baltica with simultaneous synthesis of tellurium nanorods exhibiting photo-catalytic and anti-biofilm activity. Vaigankar DC; Dubey SK; Mujawar SY; D'Costa A; S K S Ecotoxicol Environ Saf; 2018 Dec; 165():516-526. PubMed ID: 30223164 [TBL] [Abstract][Full Text] [Related]
18. Selenite reduction and biogenesis of selenium-nanoparticles by different size groups of aerobic granular sludge under aerobic conditions. Sudharsan G; Sarvajith M; Nancharaiah YV J Environ Manage; 2023 May; 334():117482. PubMed ID: 36801684 [TBL] [Abstract][Full Text] [Related]
19. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. Khoei NS; Lampis S; Zonaro E; Yrjälä K; Bernardi P; Vallini G N Biotechnol; 2017 Jan; 34():1-11. PubMed ID: 27717878 [TBL] [Abstract][Full Text] [Related]
20. A comparison of selenite and tellurite toxicity in Escherichia coli. SCALA J; WILLIAMS HH Arch Biochem Biophys; 1963 May; 101():319-24. PubMed ID: 13976481 [No Abstract] [Full Text] [Related] [Next] [New Search]