BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36366984)

  • 1. High fibroin-loaded silk-PCL electrospun fiber with core-shell morphology promotes epithelialization with accelerated wound healing.
    Rajasekaran R; Dutta A; Ray PG; Seesala VS; Ojha AK; Dogra N; Roy S; Banerjee M; Dhara S
    J Mater Chem B; 2022 Nov; 10(46):9622-9638. PubMed ID: 36366984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing.
    Chouhan D; Chakraborty B; Nandi SK; Mandal BB
    Acta Biomater; 2017 Jan; 48():157-174. PubMed ID: 27746359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fibroin H-fibroin/poly(ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release.
    Wang Z; Song X; Cui Y; Cheng K; Tian X; Dong M; Liu L
    J Colloid Interface Sci; 2021 Jul; 593():142-151. PubMed ID: 33744525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold.
    Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH
    Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release.
    Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L
    Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies.
    Agarwal Y; Rajinikanth PS; Ranjan S; Tiwari U; Balasubramnaiam J; Pandey P; Arya DK; Anand S; Deepak P
    Int J Biol Macromol; 2021 Apr; 176():376-386. PubMed ID: 33561460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold.
    Orash Mahmoud Salehi A; Nourbakhsh MS; Rafienia M; Baradaran-Rafii A; Heidari Keshel S
    Int J Biol Macromol; 2020 Oct; 161():377-388. PubMed ID: 32526297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles.
    Khan AUR; Huang K; Jinzhong Z; Zhu T; Morsi Y; Aldalbahi A; El-Newehy M; Yan X; Mo X
    J Mater Chem B; 2021 Feb; 9(5):1452-1465. PubMed ID: 33470267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coaxial electrospinning of composite mats comprised of core/shell poly(methyl methacrylate)/silk fibroin fibers for tissue engineering applications.
    Atila D; Hasirci V; Tezcaner A
    J Mech Behav Biomed Mater; 2022 Apr; 128():105105. PubMed ID: 35121425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation profiles of the poly(ε-caprolactone)/silk fibroin electrospinning membranes and their potential applications in tissue engineering.
    Xu D; Li Z; Deng Z; Nie X; Pan Y; Cheng G
    Int J Biol Macromol; 2024 May; 266(Pt 1):131124. PubMed ID: 38522701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three dimensional poly(ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis.
    Lee JM; Chae T; Sheikh FA; Ju HW; Moon BM; Park HJ; Park YR; Park CH
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():758-767. PubMed ID: 27524077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable Multi-layered Silk Fibroin-PCL Stent for the Management of Cervical Atresia: In Vitro Cytocompatibility and Extracellular Matrix Remodeling In Vivo.
    Ojha AK; Rajasekaran R; Hansda AK; Singh A; Dutta A; Seesala VS; Das S; Dogra N; Sharma S; Goswami R; Chaudhury K; Dhara S
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39099-39116. PubMed ID: 37579196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled release of titanocene into the hybrid nanofibrous scaffolds to prevent the proliferation of breast cancer cells.
    Laiva AL; Venugopal JR; Karuppuswamy P; Navaneethan B; Gora A; Ramakrishna S
    Int J Pharm; 2015 Apr; 483(1-2):115-23. PubMed ID: 25681729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and Characterization of Core-Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications.
    Singh R; Ahmed F; Polley P; Giri J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41924-41934. PubMed ID: 30433758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk fibroin nanofibers enhance cell adhesion of blood-derived fibroblast-like cells: A potential application for wound healing.
    Nikam VS; Punde DS; Bhandari RS
    Indian J Pharmacol; 2020; 52(4):306-312. PubMed ID: 33078732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization.
    Varshney N; Sahi AK; Poddar S; Mahto SK
    Int J Biol Macromol; 2020 Oct; 160():112-127. PubMed ID: 32422270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Fabrication of a Dual Protein-Based Trilayered Nanofibrous Scaffold for Efficient Wound Healing.
    Kumar V; Kumar A; Chauhan NS; Yadav G; Goswami M; Packirisamy G
    ACS Appl Bio Mater; 2022 Jun; 5(6):2726-2740. PubMed ID: 35594572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun homogeneous silk fibroin/poly (ɛ-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering.
    Zhu J; Luo J; Zhao X; Gao J; Xiong J
    J Biomater Appl; 2016 Sep; 31(3):421-37. PubMed ID: 27422715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-layered scaffolds for artificial esophagus using poly(ɛ-caprolactone) nanofibers and silk fibroin: An experimental study in a rat model.
    Chung EJ; Ju HW; Park HJ; Park CH
    J Biomed Mater Res A; 2015 Jun; 103(6):2057-65. PubMed ID: 25294581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.