BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36367092)

  • 1. Formation, Reactivity and Decomposition of Aryl Phospha-Enolates.
    Urwin SJ; Goicoechea JM
    Chemistry; 2023 Feb; 29(8):e202203081. PubMed ID: 36367092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, structure, and reactivity of some sterically hindered (Silylamino)phosphines.
    Samuel RC; Kashyap RP; Krawiec M; Watson WH; Neilson RH
    Inorg Chem; 2002 Dec; 41(26):7113-24. PubMed ID: 12495353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitations of Steric Bulk: Towards Phospha-germynes and Phospha-stannynes.
    Hinz A; Goicoechea JM
    Chemistry; 2018 May; 24(29):7358-7363. PubMed ID: 29573494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Enantioselective Hydrovinylation of Trialkylsilyloxy and Acetoxy-1,3-Dienes: Cationic Co(I) Complexes for the Synthesis of Chiral Enolate Surrogates and Their Applications for Synthesis of Ketones and Cross-Coupling Reagents in High Enantiomeric Purity.
    Biswas S; Dewese KR; Raya B; RajanBabu TV
    ACS Catal; 2022 May; 12(9):5094-5111. PubMed ID: 36110156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of α-aryl amide and ketone enolates: THF, PMDTA, TMTAN, HMPA, and crypt-solvated lithium enolates, and comparison with phosphazenium analogues.
    Kolonko KJ; Guzei IA; Reich HJ
    J Org Chem; 2010 Sep; 75(18):6163-72. PubMed ID: 20735148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel class of tertiary phosphine ligands based on a phospha-adamantane framework and use in the Suzuki cross-coupling reactions of aryl halides under mild conditions.
    Adjabeng G; Brenstrum T; Wilson J; Frampton C; Robertson A; Hillhouse J; McNulty J; Capretta A
    Org Lett; 2003 Mar; 5(6):953-5. PubMed ID: 12633114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxygenation of chalcogen oxides EO
    Dankert F; Gupta P; Wellnitz T; Baumann W; Hering-Junghans C
    Dalton Trans; 2022 Dec; 51(48):18642-18651. PubMed ID: 36448405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and Reactivity of Stannylenoids Stabilized by Amido/Imino Ligands.
    Zhao XX; Fujimori S; Kelly JA; Inoue S
    Chemistry; 2023 Jan; 29(2):e202202712. PubMed ID: 36195558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Marginally Reactive Boron Enolates by MeLi for the Formation of Enol Phosphates and Synthesis of the Δ(9)-THC Intermediate.
    Kawada H; Ikoma A; Ogawa N; Kobayashi Y
    J Org Chem; 2015 Sep; 80(18):9192-9. PubMed ID: 26325002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodium-catalyzed asymmetric 1,4-addition of aryltitanium reagents generating chiral titanium enolates: isolation as silyl enol ethers.
    Hayashi T; Tokunaga N; Yoshida K; Han JW
    J Am Chem Soc; 2002 Oct; 124(41):12102-3. PubMed ID: 12371843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Variable Reactivity of Phosphine-Functionalized [Ge
    Geitner FS; Wallach C; Fässler TF
    Chemistry; 2018 Mar; 24(16):4103-4110. PubMed ID: 29322565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Study of Structure and E-H Bond Activation Chemistry by Sterically Encumbered Germylene Complexes.
    Usher M; Protchenko AV; Rit A; Campos J; Kolychev EL; Tirfoin R; Aldridge S
    Chemistry; 2016 Aug; 22(33):11685-98. PubMed ID: 27381647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structures of lithium enolates of cyclopentanone, cyclohexanone, acetophenones, and benzyl ketones. Triple ions and higher lithiate complexes.
    Kolonko KJ; Biddle MM; Guzei IA; Reich HJ
    J Am Chem Soc; 2009 Aug; 131(32):11525-34. PubMed ID: 19634905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of H-H and H-O bonds at phosphorus with diiron complexes bearing pyramidal phosphinidene ligands.
    Alvarez MA; García ME; García-Vivó D; Ramos A; Ruiz MA
    Inorg Chem; 2012 Mar; 51(6):3698-706. PubMed ID: 22380880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation and cooperative effects in the aldol reactions of lithium enolates.
    Larrañaga O; de Cózar A; Bickelhaupt FM; Zangi R; Cossío FP
    Chemistry; 2013 Oct; 19(41):13761-73. PubMed ID: 23964002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphine-ligated induced formation of thallium(I) full Pt3TlPt3 sandwich versus "open-face" TlPt3 sandwich with triangular Pt3(mu2-CO)3(PR3)3 units: synthesis and structural/spectroscopic analysis of triphenylphosphine [(mu3-Tl)Pt3(mu2-CO)3(PPh3)3]+ and its (mu3-AuPPh3)Pt3 analogue.
    de Silva N; Fry CG; Dahl LF
    Dalton Trans; 2006 Feb; (8):1051-9. PubMed ID: 16474891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical functionality of poly(methylenephosphine): phosphine-borane adducts and methylphosphonium ionomers.
    Noonan KJ; Feldscher B; Bates JI; Kingsley JJ; Yam M; Gates DP
    Dalton Trans; 2008 Sep; (33):4451-7. PubMed ID: 18698448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diastereoselective synthesis of five- and seven-membered rings by [2+2+1], [3+2], [3+2+2], and [4+3] carbocyclization reactions of beta-substituted (alkenyl)(methoxy)carbene complexes with methyl ketone lithium enolates.
    Barluenga J; Alonso J; Fañanás FJ
    Chemistry; 2005 Aug; 11(17):4995-5006. PubMed ID: 15959861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metathesis between E-C(sp
    Esteruelas MA; López AM; Oñate E; Raga E
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202204081. PubMed ID: 35544362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic and computational study of geminally bis(supermesityl) substituted phosphorus compounds.
    Fleming CG; Slawin AM; Athukorala Arachchige KS; Randall R; Bühl M; Kilian P
    Dalton Trans; 2013 Feb; 42(5):1437-50. PubMed ID: 23165805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.