These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36367092)

  • 21. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction.
    Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH
    J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhodium-Catalyzed Dehydrogenative Silylation of Acetophenone Derivatives: Formation of Silyl Enol Ethers versus Silyl Ethers.
    Garcés K; Lalrempuia R; Polo V; Fernández-Alvarez FJ; García-Orduña P; Lahoz FJ; Pérez-Torrente JJ; Oro LA
    Chemistry; 2016 Oct; 22(41):14717-29. PubMed ID: 27553810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aggregation and reactivity of the cesium enolate of 6-phenyl-alpha-tetralone: comparison with the lithium enolate.
    Wang DZ; Streitwieser A
    J Org Chem; 2003 Nov; 68(23):8936-42. PubMed ID: 14604365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Characterization of Lithium and Sodium Bulky Bis(silyl)amide Complexes.
    Nicholas HM; Goodwin CAP; Kragskow JGC; Lockyer SJ; Mills DP
    Molecules; 2018 May; 23(5):. PubMed ID: 29748490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Structures of the Heavier Alkali Metal Salts of Supermesitylphosphane: A Systematic Investigation.
    Rabe GW; Heise H; Yap GP; Liable-Sands LM; Guzei IA; Rheingold AL
    Inorg Chem; 1998 Aug; 37(17):4235-4245. PubMed ID: 11670558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enantiomerically pure phosphaalkene-oxazolines (PhAk-Ox): synthesis, scope and copolymerization with styrene.
    Dugal-Tessier J; Serin SC; Castillo-Contreras EB; Conrad ED; Dake GR; Gates DP
    Chemistry; 2012 May; 18(20):6349-59. PubMed ID: 22489021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulating the reactivity of phosphanylidenephosphoranes towards water with Lewis acids.
    Dankert F; Fischer M; Hering-Junghans C
    Dalton Trans; 2022 Aug; 51(30):11267-11276. PubMed ID: 35766522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insertion of carbon fragments into P(III)-N bonds in aminophosphines and aminobis(phosphines): synthesis, reactivity, and coordination chemistry of resulting phosphine oxide derivatives. Crystal and molecular structures of (Ph(2)P(O)CH(2))(2)NR (R = Me, (n)Pr, (n)Bu), Ph(2)P(O)CH(OH)(n)()Pr, and cis-[MoO(2)Cl(2)((Ph(2)P(O)CH(2))(2)NEt-kappaO,kappaO)].
    Priya S; Balakrishna MS; Mague JT; Mobin SM
    Inorg Chem; 2003 Feb; 42(4):1272-81. PubMed ID: 12588166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Palladium-catalyzed intermolecular alpha-arylation of zinc amide enolates under mild conditions.
    Hama T; Culkin DA; Hartwig JF
    J Am Chem Soc; 2006 Apr; 128(15):4976-85. PubMed ID: 16608331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dependence of the Reactivities of Titanium Enolates on How They Are Generated: Diastereoselective Coupling of Phenylacetic Acid Esters Using Titanium Tetrachloride.
    Matsumura Y; Nishimura M; Hiu H; Watanabe M; Kise N
    J Org Chem; 1996 Apr; 61(8):2809-2812. PubMed ID: 11667116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brønsted base-catalyzed three-component coupling reaction of α-ketoesters, imines, and diethyl phosphite utilizing [1,2]-phospha-Brook rearrangement.
    Kondoh A; Terada M
    Org Biomol Chem; 2016 May; 14(20):4704-11. PubMed ID: 27138876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dinuclear iridium and rhodium complexes with bridging arylimidazolide-N(3),C(2) ligands: synthetic, structural, reactivity, electrochemical and spectroscopic studies.
    He F; Ruhlmann L; Gisselbrecht JP; Choua S; Orio M; Wesolek M; Danopoulos AA; Braunstein P
    Dalton Trans; 2015 Oct; 44(39):17030-44. PubMed ID: 26226202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rearrangement of bis(alkylidynyl)phosphines to phospha-acyls.
    Colebatch AL; Han YS; Hill AF; Sharma M; Shang R; Ward JS
    Chem Commun (Camb); 2017 Feb; 53(11):1832-1835. PubMed ID: 28111645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beta-agostic silylamido and silyl-hydrido compounds of molybdenum and tungsten.
    Ignatov SK; Khalimon AY; Rees NH; Razuvaev AG; Mountford P; Nikonov GI
    Inorg Chem; 2009 Oct; 48(20):9605-22. PubMed ID: 19505129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alkali metal complexes of sterically demanding amino-functionalized secondary phosphanide ligands.
    Izod K; Stewart JC; Clegg W; Harrington RW
    Dalton Trans; 2007 Jan; (2):257-64. PubMed ID: 17180194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Development of new synthetic reactions featuring tandem carbon-carbon bond formation].
    Takeda K
    Yakugaku Zasshi; 2007 Sep; 127(9):1399-418. PubMed ID: 17827921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free Metallophosphines: Extremely Electron-Rich Phosphorus Superbases That Are Electronically and Sterically Tunable.
    Wei R; Ju S; Liu LL
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202205618. PubMed ID: 35491966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organocatalytic Arylation of α-Ketoesters Based on Umpolung Strategy: Phosphazene-Catalyzed S
    Kondoh A; Aoki T; Terada M
    Chemistry; 2018 Sep; 24(50):13110-13113. PubMed ID: 29972597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organocatalyzed Phospha-Michael Addition: A Highly Efficient Synthesis of Customized Bis(acyl)phosphane Oxide Photoinitiators.
    Conti R; Widera A; Müller G; Fekete C; Thöny D; Eiler F; Benkő Z; Grützmacher H
    Chemistry; 2023 Jan; 29(1):e202202563. PubMed ID: 36200550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diverse modes of reactivity of dialkyl azodicarboxylates with P(III) compounds: synthesis, structure, and reactivity of products other than the Morrison-Brunn-Huisgen intermediate in a Mitsunobu-type reaction.
    Satish Kumar N; Praveen Kumar K; Pavan Kumar KV; Kommana P; Vittal JJ; Kumara Swamy KC
    J Org Chem; 2004 Mar; 69(6):1880-9. PubMed ID: 15058933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.