These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36367196)

  • 1. Coil spring-powered pump with inertial microfluidic chip for size-based isolation and enrichment of biological cells.
    Gwak H; Ha SM; Song JW; Hyun KA; Jung HI
    Analyst; 2022 Dec; 147(24):5710-5717. PubMed ID: 36367196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity-free hand-held inertial microfluidic sorter for size-based cell sorting.
    Xiang N; Ni Z
    Talanta; 2021 Dec; 235():122807. PubMed ID: 34517664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A frugal microfluidic pump.
    Fajrial AK; Vega A; Shakya G; Ding X
    Lab Chip; 2021 Dec; 21(24):4772-4778. PubMed ID: 34751689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow stabilizer on a syringe tip for hand-powered microfluidic sample injection.
    Xiang N; Han Y; Jia Y; Shi Z; Yi H; Ni Z
    Lab Chip; 2019 Jan; 19(2):214-222. PubMed ID: 30534798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hand-Powered Inertial Microfluidic Syringe-Tip Centrifuge.
    Xiang N; Ni Z
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications.
    Lake JR; Heyde KC; Ruder WC
    PLoS One; 2017; 12(4):e0175089. PubMed ID: 28369134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hand-powered microfluidic system for portable and low-waste sample discretization.
    Xie T; Wang P; Wu L; Sun B; Zhao Q; Li G
    Lab Chip; 2021 Sep; 21(18):3429-3437. PubMed ID: 35226028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-source spring-driven syringe pump with 3D-printed components for microfluidic applications.
    Park SB; Shin JH
    HardwareX; 2024 Sep; 19():e00550. PubMed ID: 39104615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable Battery-Driven Microfluidic Cell Separation Instrument with Multiple Operational Modes.
    Xiang N; Ni Z
    Anal Chem; 2022 Dec; 94(48):16813-16820. PubMed ID: 36417752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial Microfluidic Syringe Cell Concentrator.
    Xiang N; Shi X; Han Y; Shi Z; Jiang F; Ni Z
    Anal Chem; 2018 Aug; 90(15):9515-9522. PubMed ID: 30001491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics.
    Fallahi H; Yadav S; Phan HP; Ta H; Zhang J; Nguyen NT
    Lab Chip; 2021 May; 21(10):2008-2018. PubMed ID: 34008666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional Printing of Thermoplastic Materials to Create Automated Syringe Pumps with Feedback Control for Microfluidic Applications.
    Chen MC; Lake JR; Heyde KC; Ruder WC
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30222163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in isolation and enrichment of circulating tumor cells in microfluidic chips].
    Du J; Liu X; Xu X
    Se Pu; 2014 Jan; 32(1):7-12. PubMed ID: 24783862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility of low-cost, miniaturized peristaltic and Venturi pumps in droplet microfluidics.
    Davis JJ; Padalino M; Kaplitz AS; Murray G; Foster SW; Maturano J; Grinias JP
    Anal Chim Acta; 2021 Mar; 1151():338230. PubMed ID: 33608076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-powered switch-controlled nucleic acid extraction system.
    Han K; Yoon YJ; Shin Y; Park MK
    Lab Chip; 2016 Jan; 16(1):132-41. PubMed ID: 26562630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Microfluidics for Point-of-Care Blood Sensing.
    Tavakolidakhrabadi A; Stark M; Bacher U; Legros M; Bessire C
    Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation.
    Tabatabaei SA; Zabetian Targhi M
    Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces.
    Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M
    Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip.
    Yeh EC; Fu CC; Hu L; Thakur R; Feng J; Lee LP
    Sci Adv; 2017 Mar; 3(3):e1501645. PubMed ID: 28345028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.