These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 36367282)
1. Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits. Chen R Chem Asian J; 2023 Jan; 18(1):e202201024. PubMed ID: 36367282 [TBL] [Abstract][Full Text] [Related]
2. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Zhang C; Zhang L; Yu G Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933 [TBL] [Abstract][Full Text] [Related]
3. Microemulsions: Breakthrough Electrolytes for Redox Flow Batteries. Barth BA; Imel A; Nelms KM; Goenaga GA; Zawodzinski T Front Chem; 2022; 10():831200. PubMed ID: 35308789 [TBL] [Abstract][Full Text] [Related]
4. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte. Mitchell NH; Elgrishi N J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204 [TBL] [Abstract][Full Text] [Related]
5. Hybrid Electrolyte Engineering Enables Safe and Wide-Temperature Redox Flow Batteries. Zhang L; Yu G Angew Chem Int Ed Engl; 2021 Jun; 60(27):15028-15035. PubMed ID: 33914394 [TBL] [Abstract][Full Text] [Related]
6. Recent Developments on Electroactive Organic Electrolytes for Non-Aqueous Redox Flow Batteries: Current Status, Challenges, and Prospects. Mansha M; Anam A; Akram Khan S; Saeed Alzahrani A; Khan M; Ahmad A; Arshad M; Ali S Chem Rec; 2024 Jan; 24(1):e202300233. PubMed ID: 37695078 [TBL] [Abstract][Full Text] [Related]
7. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review. Fischer P; Mazúr P; Krakowiak J Molecules; 2022 Jan; 27(2):. PubMed ID: 35056875 [TBL] [Abstract][Full Text] [Related]
8. Electrolyte Design Strategies for Aqueous Sodium-Ion Batteries: Progress and Prospects. Xing Z; Zhao W; Yu B; Wang Y; Zhou L; Xiong P; Chen M; Zhu J Small; 2024 Nov; 20(48):e2405442. PubMed ID: 39240092 [TBL] [Abstract][Full Text] [Related]
9. Electrolyte and Interphase Engineering of Aqueous Batteries Beyond "Water-in-Salt" Strategy. Xie J; Lin D; Lei H; Wu S; Li J; Mai W; Wang P; Hong G; Zhang W Adv Mater; 2024 Apr; 36(17):e2306508. PubMed ID: 37594442 [TBL] [Abstract][Full Text] [Related]
10. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. Kwabi DG; Ji Y; Aziz MJ Chem Rev; 2020 Jul; 120(14):6467-6489. PubMed ID: 32053366 [TBL] [Abstract][Full Text] [Related]
12. Recent Development of Electrolytes for Aqueous Organic Redox Flow Batteries (Aorfbs): Current Status, Challenges, and Prospects. Mansha M; Ayub A; Khan IA; Ali S; Alzahrani AS; Khan M; Arshad M; Rauf A; Akram Khan S Chem Rec; 2024 Jan; 24(1):e202300284. PubMed ID: 38010347 [TBL] [Abstract][Full Text] [Related]
13. Interfacial Chemistry in Aqueous Lithium-Ion Batteries: A Case Study of V Hou X; Zhang L; Gogoi N; Edström K; Berg EJ Small; 2024 Jun; 20(23):e2308577. PubMed ID: 38145960 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for organic redox flow batteries through molecular modification. Geysens P; Evers J; Dehaen W; Fransaer J; Binnemans K RSC Adv; 2020 Oct; 10(65):39601-39610. PubMed ID: 35515364 [TBL] [Abstract][Full Text] [Related]
15. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance. Zhou W; Liu W; Qin M; Chen Z; Xu J; Cao J; Li J RSC Adv; 2020 Jun; 10(37):21839-21844. PubMed ID: 35516610 [TBL] [Abstract][Full Text] [Related]
16. Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells. Adil M; Ghosh A; Mitra S ACS Appl Mater Interfaces; 2022 Jun; 14(22):25501-25515. PubMed ID: 35637172 [TBL] [Abstract][Full Text] [Related]
17. Thin Film Composite Membranes with Regulated Crossover and Water Migration for Long-Life Aqueous Redox Flow Batteries. Tan R; Wang A; Ye C; Li J; Liu D; Darwich BP; Petit L; Fan Z; Wong T; Alvarez-Fernandez A; Furedi M; Guldin S; Breakwell CE; Klusener PAA; Kucernak AR; Jelfs KE; McKeown NB; Song Q Adv Sci (Weinh); 2023 Jul; 10(20):e2206888. PubMed ID: 37178400 [TBL] [Abstract][Full Text] [Related]
18. Water in Rechargeable Multivalent-Ion Batteries: An Electrochemical Pandora's Box. Manalastas W; Kumar S; Verma V; Zhang L; Yuan D; Srinivasan M ChemSusChem; 2019 Jan; 12(2):379-396. PubMed ID: 30480870 [TBL] [Abstract][Full Text] [Related]
19. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design. Zhong F; Yang M; Ding M; Jia C Front Chem; 2020; 8():451. PubMed ID: 32637392 [TBL] [Abstract][Full Text] [Related]
20. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]