These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36367434)

  • 41. 3D printing for soft robotics - a review.
    Gul JZ; Sajid M; Rehman MM; Siddiqui GU; Shah I; Kim KH; Lee JW; Choi KH
    Sci Technol Adv Mater; 2018; 19(1):243-262. PubMed ID: 29707065
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Soft Transporter Robot Fueled by Light.
    Pilz da Cunha M; Ambergen S; Debije MG; Homburg EFGA; den Toonder JMJ; Schenning APHJ
    Adv Sci (Weinh); 2020 Mar; 7(5):1902842. PubMed ID: 32154076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D Printing Microactuators for Soft Microrobots.
    Tyagi M; Spinks GM; Jager EWH
    Soft Robot; 2021 Feb; 8(1):19-27. PubMed ID: 32326869
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Untethered-Bioinspired Quadrupedal Robot Based on Double-Chamber Pre-charged Pneumatic Soft Actuators with Highly Flexible Trunk.
    Li Y; Ren T; Li Y; Liu Q; Chen Y
    Soft Robot; 2021 Feb; 8(1):97-108. PubMed ID: 32522089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D Printing Materials for Soft Robotics.
    Sachyani Keneth E; Kamyshny A; Totaro M; Beccai L; Magdassi S
    Adv Mater; 2021 May; 33(19):e2003387. PubMed ID: 33164255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3D-Printed Self-Healing Elastomers for Modular Soft Robotics.
    Gomez EF; Wanasinghe SV; Flynn AE; Dodo OJ; Sparks JL; Baldwin LA; Tabor CE; Durstock MF; Konkolewicz D; Thrasher CJ
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28870-28877. PubMed ID: 34124888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrically Activated Soft Robots: Speed Up by Rolling.
    Li WB; Zhang WM; Gao QH; Guo Q; Wu S; Zou HX; Peng ZK; Meng G
    Soft Robot; 2021 Oct; 8(5):611-624. PubMed ID: 33180656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural Cilia and Pine Needles Combinedly Inspired Asymmetric Pillar Actuators for All-Space Liquid Transport and Self-Regulated Robotic Locomotion.
    Miao J; Sun S; Zhang T; Li G; Ren H; Shen Y
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36282113
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Untethered Soft Robotics with Fully Integrated Wireless Sensing and Actuating Systems for Somatosensory and Respiratory Functions.
    Oh B; Park YG; Jung H; Ji S; Cheong WH; Cheon J; Lee W; Park JU
    Soft Robot; 2020 Oct; 7(5):564-573. PubMed ID: 31977289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D printing antagonistic systems of artificial muscle using projection stereolithography.
    Peele BN; Wallin TJ; Zhao H; Shepherd RF
    Bioinspir Biomim; 2015 Sep; 10(5):055003. PubMed ID: 26353071
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioinspired 3D-Printed Snakeskins Enable Effective Serpentine Locomotion of a Soft Robotic Snake.
    Qi X; Gao T; Tan X
    Soft Robot; 2023 Jun; 10(3):568-579. PubMed ID: 36454198
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RUBIC: An Untethered Soft Robot With Discrete Path Following.
    Chen HY; Diteesawat RS; Haynes A; Partridge AJ; Simons MF; Werner E; Garrad M; Rossiter J; Conn AT
    Front Robot AI; 2019; 6():52. PubMed ID: 33501067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion.
    Kandhari A; Huang Y; Daltorio KA; Chiel HJ; Quinn RD
    Bioinspir Biomim; 2018 Jan; 13(2):026003. PubMed ID: 29261099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spinning-enabled wireless amphibious origami millirobot.
    Ze Q; Wu S; Dai J; Leanza S; Ikeda G; Yang PC; Iaccarino G; Zhao RR
    Nat Commun; 2022 Jun; 13(1):3118. PubMed ID: 35701405
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Terrain Adaptability and Optimum Contact Stiffness of Vibro-bot with Arrayed Soft Legs.
    Yan Y; Shui L; Liu S; Liu Z; Liu Y
    Soft Robot; 2022 Oct; 9(5):981-990. PubMed ID: 34842452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation.
    Shao D; Wang Z; Ji A; Dai Z; Manoonpong P
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35236786
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wirelessly Powered 3D Printed Hierarchical Biohybrid Robots with Multiscale Mechanical Properties.
    Tetsuka H; Pirrami L; Wang T; Demarchi D; Shin SR
    Adv Funct Mater; 2022 Aug; 32(31):. PubMed ID: 36313126
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soft Tendril-Inspired Grippers: Shape Morphing of Programmable Polymer-Paper Bilayer Composites.
    Wang W; Li C; Cho M; Ahn SH
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10419-10427. PubMed ID: 29504740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tensegrity Robotics.
    Shah DS; Booth JW; Baines RL; Wang K; Vespignani M; Bekris K; Kramer-Bottiglio R
    Soft Robot; 2022 Aug; 9(4):639-656. PubMed ID: 34705572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.