These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36367435)

  • 1. Energy Barriers for Steroid Hormone Transport in Nanofiltration.
    Allouzi M; Imbrogno A; Schäfer AI
    Environ Sci Technol; 2022 Dec; 56(23):16811-16821. PubMed ID: 36367435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enthalpic and Entropic Selectivity of Water and Small Ions in Polyamide Membranes.
    Shefer I; Peer-Haim O; Leifman O; Epsztein R
    Environ Sci Technol; 2021 Nov; 55(21):14863-14875. PubMed ID: 34677944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms.
    Nghiem LD; Schäfer AI; Elimelech M
    Environ Sci Technol; 2004 Mar; 38(6):1888-96. PubMed ID: 15074703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention of pesticide Endosulfan by nanofiltration: influence of organic matter-pesticide complexation and solute-membrane interactions.
    De Munari A; Semiao AJ; Antizar-Ladislao B
    Water Res; 2013 Jun; 47(10):3484-96. PubMed ID: 23615337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review.
    Shefer I; Lopez K; Straub AP; Epsztein R
    Environ Sci Technol; 2022 Jun; 56(12):7467-7483. PubMed ID: 35549171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of endocrine disrupters in water recycling: risk or mania?
    Nghiem LD; McCutcheon J; Schäfer AI; Elimelech M
    Water Sci Technol; 2004; 50(2):215-20. PubMed ID: 15344794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of steroid micropollutants by polymer-based spherical activated carbon (PBSAC) assisted membrane filtration.
    Tagliavini M; Schäfer AI
    J Hazard Mater; 2018 Jul; 353():514-521. PubMed ID: 29719277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes.
    Fang C; Ou T; Wang X; Rui M; Chu W
    Chemosphere; 2020 Dec; 260():127625. PubMed ID: 32758776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental energy barriers to anions transporting through nanofiltration membranes.
    Richards LA; Richards BS; Corry B; Schäfer AI
    Environ Sci Technol; 2013 Feb; 47(4):1968-76. PubMed ID: 23298263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic matter interference with steroid hormone removal by single-walled carbon nanotubes - ultrafiltration composite membrane.
    Nguyen MN; Hérvas-Martínez R; Schäfer AI
    Water Res; 2021 Jul; 199():117148. PubMed ID: 33979740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review.
    Khoo YS; Goh PS; Lau WJ; Ismail AF; Abdullah MS; Mohd Ghazali NH; Yahaya NKEM; Hashim N; Othman AR; Mohammed A; Kerisnan NDA; Mohamed Yusoff MA; Fazlin Hashim NH; Karim J; Abdullah NS
    Chemosphere; 2022 Oct; 305():135151. PubMed ID: 35654232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of cyanobacterial metabolites by nanofiltration from two treated waters.
    Dixon MB; Falconet C; Ho L; Chow CW; O'Neill BK; Newcombe G
    J Hazard Mater; 2011 Apr; 188(1-3):288-95. PubMed ID: 21339048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.
    Dolar D; Vuković A; Asperger D; Kosutić K
    J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in solvent-resistant nanofiltration membranes: experimental observations and applications.
    Bhanushali D; Bhattacharyya D
    Ann N Y Acad Sci; 2003 Mar; 984():159-77. PubMed ID: 12783816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of solubility on the rejection of trace organics by nanofiltration membrane: exemplified with disinfection by-products.
    Kong FX; Wang XM; Yang HW; Chen JF; Guo CM; Zhang T; Xie YF
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18400-18409. PubMed ID: 28643277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges.
    Castaño Osorio S; Biesheuvel PM; Spruijt E; Dykstra JE; van der Wal A
    Water Res; 2022 Oct; 225():119130. PubMed ID: 36240724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Researches on factors affecting the removal of carbamazepine by nanofiltration membranes].
    Huang Y; Zhang H; Dong BZ
    Huan Jing Ke Xue; 2011 Mar; 32(3):705-10. PubMed ID: 21634167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fit-for-Purpose Design of Nanofiltration Membranes for Simultaneous Nutrient Recovery and Micropollutant Removal.
    Zhao Y; Tong X; Chen Y
    Environ Sci Technol; 2021 Mar; 55(5):3352-3361. PubMed ID: 33596060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrapore energy barriers govern ion transport and selectivity of desalination membranes.
    Zhou X; Wang Z; Epsztein R; Zhan C; Li W; Fortner JD; Pham TA; Kim JH; Elimelech M
    Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33239305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.