These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36367459)

  • 1. Erythrose and Threose: Carbonyl Migrations, Epimerizations, Aldol, and Oxidative Fragmentation Reactions under Plausible Prebiotic Conditions.
    Yi R; Kern R; Pollet P; Lin H; Krishnamurthy R; Liotta CL
    Chemistry; 2023 Feb; 29(8):e202202816. PubMed ID: 36367459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C
    Shin SM; Cao TP; Choi JM; Kim SB; Lee SJ; Lee SH; Lee DW
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diastereoselective synthesis of piperidine imino sugars using aldol additions of metalated bislactim ethers to threose and erythrose acetonides.
    Ruiz M; Ruanova TM; Blanco O; Núñez F; Pato C; Ojea V
    J Org Chem; 2008 Mar; 73(6):2240-55. PubMed ID: 18302413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prebiotic Synthesis of Glycolaldehyde and Glyceraldehyde from Formaldehyde: A Computational Study on the Initial Steps of the Formose Reaction.
    Venturini A; González J
    Chempluschem; 2024 Mar; 89(3):e202300388. PubMed ID: 37932034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric organocatalytic formation of protected and unprotected tetroses under potentially prebiotic conditions.
    Burroughs L; Clarke PA; Forintos H; Gilks JA; Hayes CJ; Vale ME; Wade W; Zbytniewski M
    Org Biomol Chem; 2012 Feb; 10(8):1565-70. PubMed ID: 22245755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient asymmetric organocatalytic formation of erythrose and threose under aqueous conditions.
    Burroughs L; Vale ME; Gilks JA; Forintos H; Hayes CJ; Clarke PA
    Chem Commun (Camb); 2010 Jul; 46(26):4776-8. PubMed ID: 20485830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Gels for a Prebiotically Relevant Asymmetric Aldol Reaction in Water: From Organocatalyst Design to Hydrogel Discovery and Back Again.
    Hawkins K; Patterson AK; Clarke PA; Smith DK
    J Am Chem Soc; 2020 Mar; 142(9):4379-4389. PubMed ID: 32023044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbic acid glycation: the reactions of L-threose in lens tissue.
    Ortwerth BJ; Speaker JA; Prabhakaram M; Lopez MG; Li EY; Feather MS
    Exp Eye Res; 1994 Jun; 58(6):665-74. PubMed ID: 7925706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational study of the open-chain and furanose structures of D-erythrose and D-threose.
    Azofra LM; Alkorta I; Elguero J; Popelier PL
    Carbohydr Res; 2012 Sep; 358():96-105. PubMed ID: 22841585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution.
    Weber AL; Pizzarello S
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12713-7. PubMed ID: 16905650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beneficial effect of internal hydrogen bonding interactions on the beta-fragmentation of primary alkoxyl radicals. Two-step conversion of D-xylo- and D-ribofuranoses into L-threose and D-erythrose, respectively.
    Hernandez-García L; Quintero L; Sánchez M; Sartillo-Piscil F
    J Org Chem; 2007 Oct; 72(22):8196-201. PubMed ID: 17900138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates.
    Lambert JB; Gurusamy-Thangavelu SA; Ma K
    Science; 2010 Feb; 327(5968):984-6. PubMed ID: 20167782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic isomerization and epimerization of D-erythrose 4-phosphate and its quantitative analysis by gas chromatography/mass spectrometry.
    Ohashi K; Terada T; Kohno T; Hosomi S; Mizoguchi T; Uehara K
    Eur J Biochem; 1984 Jul; 142(2):347-53. PubMed ID: 6547672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the mutarotation of erythrose and threose: acid catalysis.
    Azofra LM; Alkorta I; Elguero J
    Carbohydr Res; 2013 May; 372():1-8. PubMed ID: 23501397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serpentinization-Associated Mineral Catalysis of the Protometabolic Formose System.
    Omran A; Gonzalez A; Menor-Salvan C; Gaylor M; Wang J; Leszczynski J; Feng T
    Life (Basel); 2023 May; 13(6):. PubMed ID: 37374080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prebiotic Sugar Formation Under Nonaqueous Conditions and Mechanochemical Acceleration.
    Lamour S; Pallmann S; Haas M; Trapp O
    Life (Basel); 2019 Jun; 9(2):. PubMed ID: 31226799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures.
    Orazov M; Davis ME
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11777-82. PubMed ID: 26372958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of d-Glucose-
    Frush HL; Sniegoski LT; Holt NB; Isbell HS
    J Res Natl Bur Stand A Phys Chem; 1965; 69A(6):535-540. PubMed ID: 31927828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites.
    Tolborg S; Meier S; Saravanamurugan S; Fristrup P; Taarning E; Sádaba I
    ChemSusChem; 2016 Nov; 9(21):3054-3061. PubMed ID: 27562820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiophosphate photochemistry enables prebiotic access to sugars and terpenoid precursors.
    Ritson DJ; Sutherland JD
    Nat Chem; 2023 Oct; 15(10):1470-1477. PubMed ID: 37443293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.