These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36367470)
1. Engineering artificial microbial consortia based on division of labor promoted simultaneous removal of Cr(VI)-atrazine combined pollution. Wu S; Li X; Fan H; Dong Y; Wang Y; Bai Z; Zhuang X J Hazard Mater; 2023 Feb; 443(Pt A):130221. PubMed ID: 36367470 [TBL] [Abstract][Full Text] [Related]
2. Phylogenetic distance affects the artificial microbial consortia's effectiveness and colonization during the bioremediation of polluted soil with Cr(VI) and atrazine. Li X; Wu S; Fan H; Dong Y; Wang Y; Bai Z; Jing C; Zhuang X J Hazard Mater; 2023 Jul; 454():131460. PubMed ID: 37141777 [TBL] [Abstract][Full Text] [Related]
3. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent. Piñón-Castillo HA; Brito EM; Goñi-Urriza M; Guyoneaud R; Duran R; Nevarez-Moorillon GV; Gutiérrez-Corona JF; Caretta CA; Reyna-López GE J Appl Microbiol; 2010 Dec; 109(6):2173-82. PubMed ID: 20854455 [TBL] [Abstract][Full Text] [Related]
4. Isolation and Identification of Chromium Reducing Li MH; Gao XY; Li C; Yang CL; Fu CA; Liu J; Wang R; Chen LX; Lin JQ; Liu XM; Lin JQ; Pang X Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32209989 [TBL] [Abstract][Full Text] [Related]
5. Metabolic insights into how multifunctional microbial consortium enhances atrazine removal and phosphorus uptake at low temperature. Han S; Tao Y; Zhao L; Cui Y; Zhang Y J Hazard Mater; 2024 Jan; 461():132539. PubMed ID: 37717445 [TBL] [Abstract][Full Text] [Related]
6. Impact of Paenarthrobacter ureafaciens ZF1 on the soil enzyme activity and microbial community during the bioremediation of atrazine-contaminated soils. Zhang Z; Fu Q; Xiao C; Ding M; Liang D; Li H; Liu R BMC Microbiol; 2022 May; 22(1):146. PubMed ID: 35610563 [TBL] [Abstract][Full Text] [Related]
7. Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. Yao Y; Hu L; Li S; Zeng Q; Zhong H; He Z Ecotoxicol Environ Saf; 2020 Sep; 201():110850. PubMed ID: 32531571 [TBL] [Abstract][Full Text] [Related]
8. Simulated reactive zone with emulsified vegetable oil for the long-term remediation of Cr(VI)-contaminated aquifer: dynamic evolution of geological parameters and groundwater microbial community. Dong J; Yu J; Bao Q Environ Sci Pollut Res Int; 2018 Dec; 25(34):34392-34402. PubMed ID: 30306441 [TBL] [Abstract][Full Text] [Related]
9. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Wang C; Gu L; Ge S; Liu X; Zhang X; Chen X Environ Technol; 2019 Jul; 40(18):2345-2353. PubMed ID: 29465023 [TBL] [Abstract][Full Text] [Related]
10. Estimates of heavy metal tolerance and chromium(VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: chromium(VI) toxicity and environmental parameters optimization. Kang C; Wu P; Li Y; Ruan B; Zhu N; Dang Z World J Microbiol Biotechnol; 2014 Oct; 30(10):2733-46. PubMed ID: 24980945 [TBL] [Abstract][Full Text] [Related]
11. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Dogan NM; Kantar C; Gulcan S; Dodge CJ; Yilmaz BC; Mazmanci MA Environ Sci Technol; 2011 Mar; 45(6):2278-85. PubMed ID: 21319733 [TBL] [Abstract][Full Text] [Related]
12. Elucidating the roles of Cr(VI)-Cu(II) Co-pollution in the stress of aniline degradation stress: Insights into metabolic pathways and functional genes. Lin B; Tan B; Liu X; Li M; Peng H; Zhang Q; Chen J; Shen H; He Q Bioresour Technol; 2023 Nov; 387():129613. PubMed ID: 37544539 [TBL] [Abstract][Full Text] [Related]
13. Biotreatment of pyrene and Cr(VI) combined water pollution by mixed bacteria. Ge S; Gu J; Ai W; Dong X Sci Rep; 2021 Jan; 11(1):114. PubMed ID: 33420172 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms. Ibarrolaza A; Coppotelli BM; Del Panno MT; Donati ER; Morelli IS Biodegradation; 2009 Feb; 20(1):95-107. PubMed ID: 18604587 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Viti C; Pace A; Giovannetti L Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455 [TBL] [Abstract][Full Text] [Related]
16. Cr(VI) reduction by sulfidogenic and nonsulfidogenic microbial consortia. Arias YM; Tebo BM Appl Environ Microbiol; 2003 Mar; 69(3):1847-53. PubMed ID: 12620881 [TBL] [Abstract][Full Text] [Related]
17. The role of natural Fe(II)-bearing minerals in chemoautotrophic chromium (VI) bio-reduction in groundwater. Lu J; Zhang B; He C; Borthwick AGL J Hazard Mater; 2020 May; 389():121911. PubMed ID: 31879105 [TBL] [Abstract][Full Text] [Related]
18. Bioaugmentation of chromium-polluted soil microcosms with Candida tropicalis diminishes phytoavailable chromium. Bahafid W; Tahri Joutey N; Sayel H; Boularab I; El Ghachtouli N J Appl Microbiol; 2013 Sep; 115(3):727-34. PubMed ID: 23773206 [TBL] [Abstract][Full Text] [Related]
19. Hexavalent chromium removal and bioelectricity generation by Ochrobactrum sp. YC211 under different oxygen conditions. Chen CY; Cheng CY; Chen CK; Hsieh MC; Lin ST; Ho KY; Li JW; Lin CP; Chung YC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(6):502-8. PubMed ID: 26889692 [TBL] [Abstract][Full Text] [Related]
20. Real-time analysis of atrazine biodegradation and sessile bacterial growth: A quartz crystal microbalance with dissipation monitoring study. LeviRam I; Gross A; McCarthy D; Herzberg M Chemosphere; 2019 Jun; 225():871-879. PubMed ID: 30904767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]