BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36367624)

  • 21. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals.
    Vert GA; Briat JF; Curie C
    Plant Physiol; 2003 Jun; 132(2):796-804. PubMed ID: 12805609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.
    Séguéla M; Briat JF; Vert G; Curie C
    Plant J; 2008 Jul; 55(2):289-300. PubMed ID: 18397377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium-dependent protein kinases CPK21 and CPK23 phosphorylate and activate the iron-regulated transporter IRT1 to regulate iron deficiency in Arabidopsis.
    Wang Z; Zhang Y; Liu Y; Fu D; You Z; Huang P; Gao H; Zhang Z; Wang C
    Sci China Life Sci; 2023 Nov; 66(11):2646-2662. PubMed ID: 37286859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1.
    Ivanov R; Brumbarova T; Blum A; Jantke AM; Fink-Straube C; Bauer P
    Plant Cell; 2014 Mar; 26(3):1294-307. PubMed ID: 24596241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana.
    Varotto C; Maiwald D; Pesaresi P; Jahns P; Salamini F; Leister D
    Plant J; 2002 Sep; 31(5):589-99. PubMed ID: 12207649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis.
    Nishida S; Aisu A; Mizuno T
    Plant Signal Behav; 2012 Mar; 7(3):329-31. PubMed ID: 22476458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanisms governing Arabidopsis iron uptake.
    Brumbarova T; Bauer P; Ivanov R
    Trends Plant Sci; 2015 Feb; 20(2):124-33. PubMed ID: 25499025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inoculation with Bacillus subtilis and Azospirillum brasilense Produces Abscisic Acid That Reduces Irt1-Mediated Cadmium Uptake of Roots.
    Xu Q; Pan W; Zhang R; Lu Q; Xue W; Wu C; Song B; Du S
    J Agric Food Chem; 2018 May; 66(20):5229-5236. PubMed ID: 29738246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endocytosis in plants: Peculiarities and roles in the regulated trafficking of plant metal transporters.
    Ivanov R; Vert G
    Biol Cell; 2021 Jan; 113(1):1-13. PubMed ID: 33044749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ferrous iron uptake via IRT1/ZIP evolved at least twice in green plants.
    Rodrigues WFC; Lisboa ABP; Lima JE; Ricachenevsky FK; Del-Bem LE
    New Phytol; 2023 Mar; 237(6):1951-1961. PubMed ID: 36626937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.
    Thomine S; Lelièvre F; Debarbieux E; Schroeder JI; Barbier-Brygoo H
    Plant J; 2003 Jun; 34(5):685-95. PubMed ID: 12787249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
    Colangelo EP; Guerinot ML
    Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene.
    Zhang W; Du B; Liu D; Qi X
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):312-7. PubMed ID: 25446093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arabidopsis thaliana plants challenged with uranium reveal new insights into iron and phosphate homeostasis.
    Berthet S; Villiers F; Alban C; Serre NBC; Martin-Laffon J; Figuet S; Boisson AM; Bligny R; Kuntz M; Finazzi G; Ravanel S; Bourguignon J
    New Phytol; 2018 Jan; 217(2):657-670. PubMed ID: 29165807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systemic Regulation of Iron Acquisition by Arabidopsis in Environments with Heterogeneous Iron Distributions.
    Tabata R; Kamiya T; Imoto S; Tamura H; Ikuta K; Tabata M; Hirayama T; Tsukagoshi H; Tanoi K; Suzuki T; Hachiya T; Sakakibara H
    Plant Cell Physiol; 2022 Jun; 63(6):842-854. PubMed ID: 35445268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control.
    Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML
    Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TpIRT1 from Polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis.
    Jiang Y; Chen X; Chai S; Sheng H; Sha L; Fan X; Zeng J; Kang H; Zhang H; Xiao X; Zhou Y; Vatamaniuk OK; Wang Y
    Plant Sci; 2021 Nov; 312():111058. PubMed ID: 34620452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana.
    Nishida S; Kato A; Tsuzuki C; Yoshida J; Mizuno T
    Int J Mol Sci; 2015 Apr; 16(5):9420-30. PubMed ID: 25923075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.