These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36367626)
21. Threshold dynamics of a time-delayed hantavirus infection model in periodic environments. Liu JL Math Biosci Eng; 2019 May; 16(5):4758-4776. PubMed ID: 31499688 [TBL] [Abstract][Full Text] [Related]
22. An Age-Structured Model for Tilapia Lake Virus Transmission in Freshwater with Vertical and Horizontal Transmission. Kenne C; Dorville R; Mophou G; Zongo P Bull Math Biol; 2021 Jul; 83(8):90. PubMed ID: 34232396 [TBL] [Abstract][Full Text] [Related]
23. Plague disease model with weather seasonality. Ngeleja RC; Luboobi LS; Nkansah-Gyekye Y Math Biosci; 2018 Aug; 302():80-99. PubMed ID: 29800562 [TBL] [Abstract][Full Text] [Related]
24. Evolution of disease transmission during the COVID-19 pandemic: patterns and determinants. Zhu J; Gallego B Sci Rep; 2021 May; 11(1):11029. PubMed ID: 34040044 [TBL] [Abstract][Full Text] [Related]
25. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. Zhao L; Wang ZC; Ruan S J Math Biol; 2018 Dec; 77(6-7):1871-1915. PubMed ID: 29564532 [TBL] [Abstract][Full Text] [Related]
26. Commentary on the use of the reproduction number Vegvari C; Abbott S; Ball F; Brooks-Pollock E; Challen R; Collyer BS; Dangerfield C; Gog JR; Gostic KM; Heffernan JM; Hollingsworth TD; Isham V; Kenah E; Mollison D; Panovska-Griffiths J; Pellis L; Roberts MG; Scalia Tomba G; Thompson RN; Trapman P Stat Methods Med Res; 2022 Sep; 31(9):1675-1685. PubMed ID: 34569883 [TBL] [Abstract][Full Text] [Related]
27. Analysis of War and Conflict Effect on the Transmission Dynamics of the Tenth Ebola Outbreak in the Democratic Republic of Congo. Chapwanya M; Lubuma J; Terefe Y; Tsanou B Bull Math Biol; 2022 Oct; 84(12):136. PubMed ID: 36255647 [TBL] [Abstract][Full Text] [Related]
28. A diffusive virus model with a fixed intracellular delay and combined drug treatments. Wang FB; Cheng CY J Math Biol; 2021 Jul; 83(2):19. PubMed ID: 34324062 [TBL] [Abstract][Full Text] [Related]
29. Critical fluctuations in epidemic models explain COVID-19 post-lockdown dynamics. Aguiar M; Van-Dierdonck JB; Mar J; Cusimano N; Knopoff D; Anam V; Stollenwerk N Sci Rep; 2021 Jul; 11(1):13839. PubMed ID: 34226646 [TBL] [Abstract][Full Text] [Related]
30. A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis. Kumar A; Goel K; Nilam Theory Biosci; 2020 Feb; 139(1):67-76. PubMed ID: 31493204 [TBL] [Abstract][Full Text] [Related]
31. Mathematical analysis of a measles transmission dynamics model in Bangladesh with double dose vaccination. Kuddus MA; Mohiuddin M; Rahman A Sci Rep; 2021 Aug; 11(1):16571. PubMed ID: 34400667 [TBL] [Abstract][Full Text] [Related]
32. Mathematical model analysis and numerical simulation for codynamics of meningitis and pneumonia infection with intervention. Kotola BS; Mekonnen TT Sci Rep; 2022 Feb; 12(1):2639. PubMed ID: 35173209 [TBL] [Abstract][Full Text] [Related]
33. Modeling the dynamics of COVID-19 with real data from Thailand. Ibrahim A; Humphries UW; Ngiamsunthorn PS; Baba IA; Qureshi S; Khan A Sci Rep; 2023 Aug; 13(1):13082. PubMed ID: 37567888 [TBL] [Abstract][Full Text] [Related]
34. A Zika Endemic Model for the Contribution of Multiple Transmission Routes. Yuan X; Lou Y; He D; Wang J; Gao D Bull Math Biol; 2021 Sep; 83(11):111. PubMed ID: 34581872 [TBL] [Abstract][Full Text] [Related]
35. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase. Britton T; Juher D; SaldaƱa J Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576 [TBL] [Abstract][Full Text] [Related]
36. Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment. Zhao H; Wang K; Wang H J Math Biol; 2023 Jan; 86(3):32. PubMed ID: 36695934 [TBL] [Abstract][Full Text] [Related]
37. A PERIODIC ROSS-MACDONALD MODEL IN A PATCHY ENVIRONMENT. Gao D; Lou Y; Ruan S Discrete Continuous Dyn Syst Ser B; 2014 Dec; 19(10):3133-3145. PubMed ID: 25473381 [TBL] [Abstract][Full Text] [Related]
38. Mathematical Model of COVID-19 Pandemic with Double Dose Vaccination. Peter OJ; Panigoro HS; Abidemi A; Ojo MM; Oguntolu FA Acta Biotheor; 2023 Mar; 71(2):9. PubMed ID: 36877326 [TBL] [Abstract][Full Text] [Related]
39. Superspreading in early transmissions of COVID-19 in Indonesia. Hasan A; Susanto H; Kasim MF; Nuraini N; Lestari B; Triany D; Widyastuti W Sci Rep; 2020 Dec; 10(1):22386. PubMed ID: 33372191 [TBL] [Abstract][Full Text] [Related]
40. A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand. Riyapan P; Shuaib SE; Intarasit A Comput Math Methods Med; 2021; 2021():6664483. PubMed ID: 33815565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]