These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36367815)

  • 1. Impenetrable Barrier at the Metal-Mott Insulator Junction in Polymorphic 1H and 1T NbSe
    Zhang H; Yan C; Ge Z; Weinert M; Li L
    J Phys Chem Lett; 2022 Nov; 13(46):10713-10721. PubMed ID: 36367815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolayer 1T-NbSe
    Liu M; Leveillee J; Lu S; Yu J; Kim H; Tian C; Shi Y; Lai K; Zhang C; Giustino F; Shih CK
    Sci Adv; 2021 Nov; 7(47):eabi6339. PubMed ID: 34797708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing Spatial Evolution of Electron-Correlated Interface in Two-Dimensional Heterostructures.
    Zhang Q; Hou Y; Zhang T; Xu Z; Huang Z; Yuan P; Jia L; Yang H; Huang Y; Ji W; Qiao J; Wu X; Wang Y
    ACS Nano; 2021 Oct; 15(10):16589-16596. PubMed ID: 34606233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe
    Nakata Y; Sugawara K; Chainani A; Oka H; Bao C; Zhou S; Chuang PY; Cheng CM; Kawakami T; Saruta Y; Fukumura T; Zhou S; Takahashi T; Sato T
    Nat Commun; 2021 Oct; 12(1):5873. PubMed ID: 34620875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure of single layer 1T-NbSe
    Kamil E; Berges J; Schönhoff G; Rösner M; Schüler M; Sangiovanni G; Wehling TO
    J Phys Condens Matter; 2018 Aug; 30(32):325601. PubMed ID: 29985162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mottness collapse without metallization in the domain wall of the triangular-lattice Mott insulator 1T-TaS_{2}.
    Skolimowski J; Gerasimenko Y; Žitko R
    Phys Rev Lett; 2019 Jan; 122(3):036802. PubMed ID: 30735418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically driven reversible insulator-metal phase transition in 1T-TaS2.
    Hollander MJ; Liu Y; Lu WJ; Li LJ; Sun YP; Robinson JA; Datta S
    Nano Lett; 2015 Mar; 15(3):1861-6. PubMed ID: 25626012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Insulator-Metal Transition by Chemical Doping and Dedoping of a Mott Insulator.
    Teruya R; Sato T; Yamashita M; Hanasaki N; Ueda A; Matsuda M
    Angew Chem Int Ed Engl; 2022 Aug; 61(34):e202206428. PubMed ID: 35676224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gate-Tunable Graphene-WSe
    LaGasse SW; Dhakras P; Watanabe K; Taniguchi T; Lee JU
    Adv Mater; 2019 Jun; 31(24):e1901392. PubMed ID: 31012200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoheat-induced Schottky nanojunction and indirect Mott transition in VO₂: photocurrent analysis.
    Kim HT; Kim M; Sohn A; Slusar T; Seo G; Cheong H; Kim DW
    J Phys Condens Matter; 2016 Mar; 28(8):085602. PubMed ID: 26829104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge Transfer Gap Tuning via Structural Distortion in Monolayer 1T-NbSe
    Liu ZY; Qiao S; Huang B; Tang QY; Ling ZH; Zhang WH; Xia HN; Liao X; Shi H; Mao WH; Zhu GL; Lü JT; Fu YS
    Nano Lett; 2021 Aug; 21(16):7005-7011. PubMed ID: 34350759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Charge Density Wave Phase of 1T-TaSe_{2}: Mott or Charge-Transfer Gap?
    Sayers CJ; Cerullo G; Zhang Y; Sanders CE; Chapman RT; Wyatt AS; Chatterjee G; Springate E; Wolverson D; Da Como E; Carpene E
    Phys Rev Lett; 2023 Apr; 130(15):156401. PubMed ID: 37115877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions.
    Aierken Y; Sevik C; Gülseren O; Peeters FM; Çakır D
    Nanotechnology; 2018 Jul; 29(29):295202. PubMed ID: 29714168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteroepitaxial Control of Fermi Liquid, Hund Metal, and Mott Insulator Phases in Single-Atomic-Layer Ruthenates.
    Kim JR; Sohn B; Lee HJ; Lee S; Ko EK; Hahn S; Lee S; Kim Y; Kim D; Kim HJ; Kim Y; Son J; Ahn CH; Walker FJ; Go A; Kim M; Kim CH; Kim C; Noh TW
    Adv Mater; 2023 Apr; 35(15):e2208833. PubMed ID: 36739615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation-driven charge order at the interface between a Mott and a band insulator.
    Pentcheva R; Pickett WE
    Phys Rev Lett; 2007 Jul; 99(1):016802. PubMed ID: 17678179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure-induced transition from a Mott insulator to a ferromagnetic Weyl metal in La
    Yang Y; Yu F; Wen X; Gui Z; Zhang Y; Zhan F; Wang R; Ying J; Chen X
    Nat Commun; 2023 Apr; 14(1):2260. PubMed ID: 37081003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic reconstruction at an interface between a Mott insulator and a band insulator.
    Okamoto S; Millis AJ
    Nature; 2004 Apr; 428(6983):630-3. PubMed ID: 15071589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered Mott ground state in a LaTiO(3+δ)/LaNiO3 heterostructure.
    Cao Y; Liu X; Kareev M; Choudhury D; Middey S; Meyers D; Kim JW; Ryan PJ; Freeland JW; Chakhalian J
    Nat Commun; 2016 Jan; 7():10418. PubMed ID: 26791402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical Metal to Charge-Density-Wave Junctions in an Atomic Wire Array.
    Song SK; Samad A; Wippermann S; Yeom HW
    Nano Lett; 2019 Aug; 19(8):5769-5773. PubMed ID: 31276408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schottky barrier lowering due to interface states in 2D heterophase devices.
    Jelver L; Stradi D; Stokbro K; Jacobsen KW
    Nanoscale Adv; 2021 Jan; 3(2):567-574. PubMed ID: 36131736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.