These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36368067)

  • 21. Transcriptomic analysis dissects the regulatory strategy of toxic cyanobacterium Microcystis aeruginosa under differential nitrogen forms.
    Yang X; Bi Y; Ma X; Dong W; Wang X; Wang S
    J Hazard Mater; 2022 Apr; 428():128276. PubMed ID: 35051775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of changes in Microcystis aeruginosa growth and microcystin production by urea via transcriptomic surveys.
    Zhou Y; Zhang X; Li X; Jia P; Dai R
    Sci Total Environ; 2019 Mar; 655():181-187. PubMed ID: 30469064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of unsaturated fatty acid sustained-release microspheres for long-term algal inhibition.
    Ni L; Jie X; Wang P; Li S; Hu S; Li Y; Li Y; Acharya K
    Chemosphere; 2015 Feb; 120():383-90. PubMed ID: 25201788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation.
    Zhou Y; Li X; Xia Q; Dai R
    Sci Total Environ; 2020 Jan; 700():134501. PubMed ID: 31689655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional and Physiological Responses to Nutrient Loading on Toxin Formation and Photosynthesis in Microcystis Aeruginosa FACHB-905.
    Peng G; Lin S; Fan Z; Wang X
    Toxins (Basel); 2017 May; 9(5):. PubMed ID: 28513574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of extracellular polymeric substance (EPS) fractions produced by Microcystis aeruginosa under the stress of linoleic acid sustained-release microspheres.
    Ni L; Li D; Rong S; Su L; Zhou W; Wang P; Wang C; Li S; Acharya K
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21091-21102. PubMed ID: 28730360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Daily transcriptome changes reveal the role of nitrogen in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa.
    Harke MJ; Gobler CJ
    BMC Genomics; 2015 Dec; 16():1068. PubMed ID: 26673568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of 4-tert-butylpyrocatechol and tea polyphenol on growth, physiology and antioxidant responses in Microcystis aeruginosa.
    Lu Y; Jiang X; Xu H; Liu C; Song Y; Pan K; Wang L; Du L; Liu H
    Aquat Toxicol; 2023 Jul; 260():106541. PubMed ID: 37172458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological and molecular mechanisms of the inhibitory effects of artemisinin on Microcystis aeruginosa and Chlorella pyrenoidosa.
    Sang W; Du C; Ni L; Li S; Hamad AAA; Xu C; Shao C
    J Hazard Mater; 2024 May; 470():134241. PubMed ID: 38608594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An innovative strategy to control Microcystis growth using tea polyphenols sustained-release particles: preparation, characterization, and inhibition mechanism.
    Ni L; Wang J; Fang Y; Zhu C; Wizi J; Jiang Z; Du C; Li S; Chen X; Xu J; Su H
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43113-43125. PubMed ID: 36648729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium
    Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorptive removal of harmful algal species Microcystis aeruginosa directly from aqueous solution using polyethylenimine coated polysulfone-biomass composite fiber.
    Kim S; Jeon MS; Kim JY; Sim SJ; Choi JS; Kwon J; Choi YE
    Biodegradation; 2018 Aug; 29(4):349-358. PubMed ID: 29943215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating regular and transcriptomic analyses reveal resistance mechanisms in Corbicula fluminea (Müller, 1774) in response to toxic Microcystis aeruginosa exposure.
    Zhang J; Yu M; Zhang Z; Zhang M; Gao Y; Dong J; Zhou C; Li X
    Ecotoxicol Environ Saf; 2023 Feb; 251():114553. PubMed ID: 36680989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological, biochemical and transcriptional responses of cyanobacteria to environmentally relevant concentrations of a typical antibiotic-roxithromycin.
    Xin R; Yu X; Fan J
    Sci Total Environ; 2022 Mar; 814():152703. PubMed ID: 34973318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH.
    Liu Y; Li L; Zheng L; Fu P; Wang Y; Nguyen H; Shen X; Sui Y
    Chemosphere; 2020 Mar; 243():125241. PubMed ID: 31995860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of allelochemical artemisinin in Artemisia annua on Microcystis aeruginosa: growth, death mode, and microcystin-LR changes.
    Ni L; Wu H; Du C; Li X; Li Y; Xu C; Wang P; Li S; Zhang J; Chen X
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45253-45265. PubMed ID: 33861424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Allelopathic inhibition effects and mechanism of phenolic acids to Microcystis aeruginosa.
    Li M; Wang Y; Xiao J; Yan X; Liu B
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):45388-45397. PubMed ID: 36705822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake.
    Liu J; Yang C; Chi Y; Wu D; Dai X; Zhang X; Igarashi Y; Luo F
    J Basic Microbiol; 2019 Nov; 59(11):1112-1124. PubMed ID: 31502316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Algicidal Molecular Mechanism and Toxicological Degradation of
    Zeng G; Gao P; Wang J; Zhang J; Zhang M; Sun D
    Toxins (Basel); 2020 Jun; 12(6):. PubMed ID: 32575534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxicity mechanism of Nylon microplastics on Microcystis aeruginosa through three pathways: Photosynthesis, oxidative stress and energy metabolism.
    Zheng X; Liu X; Zhang L; Wang Z; Yuan Y; Li J; Li Y; Huang H; Cao X; Fan Z
    J Hazard Mater; 2022 Mar; 426():128094. PubMed ID: 34952496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.