BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36368143)

  • 1. Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@gelatin/AuNCs nanocomposite.
    Dadmehr M; Mortezaei M; Korouzhdehi B
    Biosens Bioelectron; 2023 Jan; 220():114889. PubMed ID: 36368143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorometric and colorimetric method for determination of trypsin by exploiting the gold nanocluster-induced aggregation of hemoglobin-coated gold nanoparticles.
    Zhou Z; Liu W; Wang Y; Ding F; Liu X; Zhao Q; Zou P; Wang X; Rao H
    Mikrochim Acta; 2019 Apr; 186(5):272. PubMed ID: 30963286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous zymography screening of matrix metalloproteinase activity and inhibition based on colorimetric gold nanoparticles.
    Chuang YC; Huang WT; Chiang PH; Tang MC; Lin CS
    Biosens Bioelectron; 2012 Feb; 32(1):24-31. PubMed ID: 22192454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatin-modified gold nanoparticles for direct detection of urinary total gelatinase activity: Diagnostic value in bladder cancer.
    Nossier AI; Mohammed OS; Fakhr El-Deen RR; Zaghloul AS; Eissa S
    Talanta; 2016 Dec; 161():511-519. PubMed ID: 27769440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorometric sensing method for sensitive detection of trypsin and its inhibitor based on gold nanoclusters and gold nanoparticles.
    Wang M; Su D; Wang G; Su X
    Anal Bioanal Chem; 2018 Oct; 410(26):6891-6900. PubMed ID: 30105625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric and label free detection of gelatinase positive bacteria and gelatinase activity based on aggregation and dissolution of gold nanoparticles.
    Mortezaei M; Dadmehr M; Korouzhdehi B; Hakimi M; Ramshini H
    J Microbiol Methods; 2021 Dec; 191():106349. PubMed ID: 34699865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe.
    Liu JM; Chen JT; Yan XP
    Anal Chem; 2013 Mar; 85(6):3238-45. PubMed ID: 23413985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters.
    Zhang L; Han F
    Nanotechnology; 2018 Apr; 29(16):165702. PubMed ID: 29424708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a magnetic-fluorescent-plasmonic nanosensor for the determination of MMP-2 activity based on SERS-fluorescence dual-mode signals.
    Liu L; Chu H; Yang J; Sun Y; Ma P; Song D
    Biosens Bioelectron; 2022 Sep; 212():114389. PubMed ID: 35635973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanocluster-loaded hybrid albumin nanoparticles with fluorescence-based optical visualization and photothermal conversion for tumor detection/ablation.
    Park S; Kim H; Lim SC; Lim K; Lee ES; Oh KT; Choi HG; Youn YS
    J Control Release; 2019 Jun; 304():7-18. PubMed ID: 31028785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual-mode colorimetric and fluorometric "light on" sensor for thiocyanate based on fluorescent carbon dots and unmodified gold nanoparticles.
    Zhao D; Chen C; Lu L; Yang F; Yang X
    Analyst; 2015 Dec; 140(24):8157-64. PubMed ID: 26567774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold Nanocluster-Assisted Fluorescent Detection for Hydrogen Peroxide and Cholesterol Based on the Inner Filter Effect of Gold Nanoparticles.
    Chang HC; Ho JA
    Anal Chem; 2015 Oct; 87(20):10362-7. PubMed ID: 26379119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance dependent fluorescence quenching and enhancement of gold nanoclusters by gold nanoparticles.
    Qin H; Ma D; Du J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():161-166. PubMed ID: 28810178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric and photothermal dual-mode immunosensor based on Ti
    Huang N; Sheng W; Jin Z; Bai D; Sun M; Ren L; Wang S; Wang Z; Tang X; Ya T
    Mikrochim Acta; 2023 Nov; 190(12):479. PubMed ID: 37994918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters.
    Tao Y; Lin Y; Ren J; Qu X
    Biosens Bioelectron; 2013 Apr; 42():41-6. PubMed ID: 23202328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optical biosensing platform for proteinase activity using gold nanoparticles.
    Chuang YC; Li JC; Chen SH; Liu TY; Kuo CH; Huang WT; Lin CS
    Biomaterials; 2010 Aug; 31(23):6087-95. PubMed ID: 20471084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doxorubicin encapsulated clicked gold nanoparticle clusters exhibiting tumor-specific disassembly for enhanced tumor localization and computerized tomographic imaging.
    Mao W; Kim HS; Son YJ; Kim SR; Yoo HS
    J Control Release; 2018 Jan; 269():52-62. PubMed ID: 29113793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Split aptamer based sensing platform for adenosine deaminase detection by fluorescence resonance energy transfer.
    Wang M; Chen J; Su D; Wang G; Su X
    Talanta; 2019 Jun; 198():1-7. PubMed ID: 30876536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorimetric assay of matrix metalloproteinase activity based on metal-induced self-assembly of carboxy gold nanoparticles.
    Kim GB; Kim KH; Park YH; Ko S; Kim YP
    Biosens Bioelectron; 2013 Mar; 41():833-9. PubMed ID: 23127765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Referenced Ratiometric Detection of Sulfatase Activity with Dual-Emissive Urease-Encapsulated Gold Nanoclusters.
    Deng HH; Peng HP; Huang KY; He SB; Yuan QF; Lin Z; Chen RT; Xia XH; Chen W
    ACS Sens; 2019 Feb; 4(2):344-352. PubMed ID: 30652857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.