These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products. Tu Y; Tan L; Tao H; Li Y; Liu H Phytomedicine; 2023 Jul; 116():154862. PubMed ID: 37216761 [TBL] [Abstract][Full Text] [Related]
4. Lenz T; Stühler K Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628420 [TBL] [Abstract][Full Text] [Related]
5. Obtaining Functional Proteomics Insights From Thermal Proteome Profiling Through Optimized Melt Shift Calculation and Statistical Analysis With InflectSSP. McCracken NA; Liu H; Runnebohm AM; Wijeratne HRS; Wijeratne AB; Staschke KA; Mosley AL Mol Cell Proteomics; 2023 Sep; 22(9):100630. PubMed ID: 37562535 [TBL] [Abstract][Full Text] [Related]
6. Thermal Proteome Profiling for Drug Target Identification and Probing of Protein States. Sauer P; Bantscheff M Methods Mol Biol; 2023; 2718():73-98. PubMed ID: 37665455 [TBL] [Abstract][Full Text] [Related]
7. [Thermal proteome profiling: a technique for a comprehensive assessment of protein status]. Qiu Y; Zhai B; Bai Y; Chen S; Zhang J Sheng Wu Gong Cheng Xue Bao; 2022 Oct; 38(10):3628-3637. PubMed ID: 36305398 [TBL] [Abstract][Full Text] [Related]
8. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale. Kaur U; Meng H; Lui F; Ma R; Ogburn RN; Johnson JHR; Fitzgerald MC; Jones LM J Proteome Res; 2018 Nov; 17(11):3614-3627. PubMed ID: 30222357 [TBL] [Abstract][Full Text] [Related]
9. Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA). Dai L; Prabhu N; Yu LY; Bacanu S; Ramos AD; Nordlund P Annu Rev Biochem; 2019 Jun; 88():383-408. PubMed ID: 30939043 [TBL] [Abstract][Full Text] [Related]
10. Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes. Mateus A; Määttä TA; Savitski MM Proteome Sci; 2016; 15():13. PubMed ID: 28652855 [TBL] [Abstract][Full Text] [Related]
11. Network integration of thermal proteome profiling with multi-omics data decodes PARP inhibition. Burtscher ML; Gade S; Garrido-Rodriguez M; Rutkowska A; Werner T; Eberl HC; Petretich M; Knopf N; Zirngibl K; Grandi P; Bergamini G; Bantscheff M; Fälth-Savitski M; Saez-Rodriguez J Mol Syst Biol; 2024 Apr; 20(4):458-474. PubMed ID: 38454145 [TBL] [Abstract][Full Text] [Related]
12. Target Engagement of Small Molecules: Thermal Profiling Approaches on Different Levels. Reckzeh ES; Brockmeyer A; Metz M; Waldmann H; Janning P Methods Mol Biol; 2019; 1888():73-98. PubMed ID: 30519941 [TBL] [Abstract][Full Text] [Related]
13. Improved Proteomics-Based Drug Mechanism-of-Action Studies Using 16-Plex Isobaric Mass Tags. Zinn N; Werner T; Doce C; Mathieson T; Boecker C; Sweetman G; Fufezan C; Bantscheff M J Proteome Res; 2021 Mar; 20(3):1792-1801. PubMed ID: 33621079 [TBL] [Abstract][Full Text] [Related]
14. Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite Herneisen AL; Lourido S Bio Protoc; 2021 Nov; 11(21):e4207. PubMed ID: 34859122 [No Abstract] [Full Text] [Related]
15. Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling. Zecha J; Gabriel W; Spallek R; Chang YC; Mergner J; Wilhelm M; Bassermann F; Kuster B Nat Commun; 2022 Jan; 13(1):165. PubMed ID: 35013197 [TBL] [Abstract][Full Text] [Related]
16. Integrated changes in thermal stability and proteome abundance during altered nutrient states in Escherichia coli and human cells. Sultonova M; Blackmore B; Du R; Philips O; Paulo JA; Murphy JP Proteomics; 2022 Oct; 22(19-20):e2100254. PubMed ID: 36082775 [TBL] [Abstract][Full Text] [Related]
17. On the utility of ultrafast MS1-only proteomics in drug target discovery studies based on thermal proteome profiling method. Fedorov II; Bubis JA; Kazakova EM; Lobas AA; Ivanov MV; Emekeeva DD; Tarasova IA; Nazarov AA; Gorshkov MV Anal Bioanal Chem; 2024 Jul; 416(18):4083-4089. PubMed ID: 38744720 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling. George AL; Sidgwick FR; Watt JE; Martin MP; Trost M; Marín-Rubio JL; Dueñas ME J Proteome Res; 2023 Aug; 22(8):2629-2640. PubMed ID: 37439223 [TBL] [Abstract][Full Text] [Related]
19. Label-Free Quantitative Thermal Proteome Profiling Reveals Target Transcription Factors with Activities Modulated by MC3R Signaling. Sandbaumhüter FA; Nezhyva M; Andrén PE; Jansson ET Anal Chem; 2023 Oct; 95(41):15400-15408. PubMed ID: 37804223 [TBL] [Abstract][Full Text] [Related]
20. Pervasive Protein Thermal Stability Variation during the Cell Cycle. Becher I; Andrés-Pons A; Romanov N; Stein F; Schramm M; Baudin F; Helm D; Kurzawa N; Mateus A; Mackmull MT; Typas A; Müller CW; Bork P; Beck M; Savitski MM Cell; 2018 May; 173(6):1495-1507.e18. PubMed ID: 29706546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]