These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 36368395)
1. Identification of volatile organic compound emissions from anthropogenic and biogenic sources based on satellite observation of formaldehyde and glyoxal. Chen Y; Liu C; Su W; Hu Q; Zhang C; Liu H; Yin H Sci Total Environ; 2023 Feb; 859(Pt 1):159997. PubMed ID: 36368395 [TBL] [Abstract][Full Text] [Related]
2. Distribution of volatile organic compounds over Indian subcontinent during winter: WRF-chem simulation versus observations. Chutia L; Ojha N; Girach IA; Sahu LK; Alvarado LMA; Burrows JP; Pathak B; Bhuyan PK Environ Pollut; 2019 Sep; 252(Pt A):256-269. PubMed ID: 31153030 [TBL] [Abstract][Full Text] [Related]
3. [High-resolution Emission Inventory of Reactive Volatile Organic Compounds from Anthropogenic Sources in the Yangtze River Delta Region]. Tian JJ; Ding X; An JY; Li M; Wang X; Huang C Huan Jing Ke Xue; 2023 Jan; 44(1):58-65. PubMed ID: 36635795 [TBL] [Abstract][Full Text] [Related]
4. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Gu S; Guenther A; Faiola C Environ Sci Technol; 2021 Sep; 55(18):12191-12201. PubMed ID: 34495669 [TBL] [Abstract][Full Text] [Related]
5. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. Zhang Y; Li R; Fu H; Zhou D; Chen J J Environ Sci (China); 2018 Sep; 71():233-248. PubMed ID: 30195682 [TBL] [Abstract][Full Text] [Related]
6. Identifying hotspots based on high-resolution emission inventory of volatile organic compounds: A case study in China. Liu X; Yan F; Hua H; Yuan Z J Environ Manage; 2021 Jun; 288():112419. PubMed ID: 33827028 [TBL] [Abstract][Full Text] [Related]
7. Space-Based Observations of Ozone Precursors within California Wildfire Plumes and the Impacts on Ozone-NO Jin X; Fiore AM; Cohen RC Environ Sci Technol; 2023 Oct; 57(39):14648-14660. PubMed ID: 37703172 [TBL] [Abstract][Full Text] [Related]
8. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Ou J; Zheng J; Li R; Huang X; Zhong Z; Zhong L; Lin H Sci Total Environ; 2015 Oct; 530-531():393-402. PubMed ID: 26057544 [TBL] [Abstract][Full Text] [Related]
9. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
10. Evaluating major anthropogenic VOC emission sources in densely populated Vietnamese cities. Dominutti PA; Hopkins JR; Shaw M; Mills GP; Le HA; Huy DH; Forster GL; Keita S; Hien TT; Oram DE Environ Pollut; 2023 Feb; 318():120927. PubMed ID: 36565909 [TBL] [Abstract][Full Text] [Related]
11. Characteristics of Volatile Organic Compounds in Nanjing and Suzhou, Two Urban Sites in the Yangtze River Delta, China. An J; Su X; Zhang Y; Zhu B Arch Environ Contam Toxicol; 2020 Apr; 78(3):416-429. PubMed ID: 32052068 [TBL] [Abstract][Full Text] [Related]
12. The research hotspots and trends of volatile organic compound emissions from anthropogenic and natural sources: A systematic quantitative review. Duan C; Liao H; Wang K; Ren Y Environ Res; 2023 Jan; 216(Pt 1):114386. PubMed ID: 36162470 [TBL] [Abstract][Full Text] [Related]
13. Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China. Pei C; Yang W; Zhang Y; Song W; Xiao S; Wang J; Zhang J; Zhang T; Chen D; Wang Y; Chen Y; Wang X Sci Total Environ; 2022 Jun; 823():153720. PubMed ID: 35149077 [TBL] [Abstract][Full Text] [Related]
14. [Anthropogenic VOC emission inventory and contribution from industrial sources in Ningbo]. Li X; Wang XS; Liu Z; Wu L; Weng YB; Hu J Huan Jing Ke Xue; 2014 Jul; 35(7):2497-502. PubMed ID: 25244829 [TBL] [Abstract][Full Text] [Related]
15. Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities. Gkatzelis GI; Coggon MM; McDonald BC; Peischl J; Gilman JB; Aikin KC; Robinson MA; Canonaco F; Prevot ASH; Trainer M; Warneke C Environ Sci Technol; 2021 Apr; 55(8):4332-4343. PubMed ID: 33720711 [TBL] [Abstract][Full Text] [Related]
16. Vertical distribution and temporal evolution of formaldehyde and glyoxal derived from MAX-DOAS observations: The indicative role of VOC sources. Hong Q; Liu C; Hu Q; Zhang Y; Xing C; Ou J; Tan W; Liu H; Huang X; Wu Z J Environ Sci (China); 2022 Dec; 122():92-104. PubMed ID: 35717094 [TBL] [Abstract][Full Text] [Related]
17. [Inventory and environmental impact of VOCs emission from the typical anthropogenic sources in Sichuan province]. Han L; Wang XR; He M; Guo WG Huan Jing Ke Xue; 2013 Dec; 34(12):4535-42. PubMed ID: 24640887 [TBL] [Abstract][Full Text] [Related]
18. Identifying the wintertime sources of volatile organic compounds (VOCs) from MAX-DOAS measured formaldehyde and glyoxal in Chongqing, southwest China. Xing C; Liu C; Hu Q; Fu Q; Lin H; Wang S; Su W; Wang W; Javed Z; Liu J Sci Total Environ; 2020 May; 715():136258. PubMed ID: 32007868 [TBL] [Abstract][Full Text] [Related]
19. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China. Huang XF; Zhang B; Xia SY; Han Y; Wang C; Yu GH; Feng N Environ Pollut; 2020 Jun; 261():114152. PubMed ID: 32066058 [TBL] [Abstract][Full Text] [Related]
20. Estimation of Anthropogenic VOCs Emission Based on Volatile Chemical Products: A Canadian Perspective. Asif Z; Chen Z; Haghighat F; Nasiri F; Dong J Environ Manage; 2023 Apr; 71(4):685-703. PubMed ID: 36416924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]