These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36368535)

  • 1. Multi-catalysis of glow discharge plasma coupled with FeS
    Zhang Q; Li Y; Li H; Zhang Y; Zhang L; Zhong S; Shu X
    Chemosphere; 2023 Jan; 312(Pt 1):137204. PubMed ID: 36368535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced sulfur accelerates Fe(III)/Fe(II) recycling in FeS
    Jiang S; Han Y; Sun B; Zeng L; Gong J
    Chemosphere; 2024 Apr; 353():141588. PubMed ID: 38430939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic improving photo-Fenton and photo-catalytic degradation of carbamazepine over FeS
    Gong C; Zhai J; Wang X; Zhu W; Yang D; Luo Y; Gao X
    Chemosphere; 2022 Nov; 307(Pt 4):136199. PubMed ID: 36030937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur defect and Fe(III) (hydr)oxides on pyrite surface mediate tylosin adsorption in lake water: effect of solution chemistry and dissolved organic matter.
    Zhang Q; Zhou J; Zhang L; Zhong S; Ru X; Shu X
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):90248-90258. PubMed ID: 35869343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcoming Acidic H
    Zhang T; Wen Y; Pan Z; Kuwahara Y; Mori K; Yamashita H; Zhao Y; Qian X
    Environ Sci Technol; 2022 Feb; 56(4):2617-2625. PubMed ID: 35098712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient photocatalytic removal of orange II by a Mn
    Xu Y; Guo X; Zha F; Tang X; Tian H
    J Environ Manage; 2020 Jan; 253():109695. PubMed ID: 31634744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient transformation of diethyl phthalate using calcium peroxide activated by pyrite.
    Zhou Y; Huang M; Wang X; Gao J; Fang G; Zhou D
    Chemosphere; 2020 Aug; 253():126662. PubMed ID: 32268253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance and mechanism of FeS
    Wang Y; Zhu Q; Xie T; Peng Y; Wang J; Yao Z
    Environ Technol; 2023 Oct; 44(24):3731-3740. PubMed ID: 35481420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxylamine promoted hydroxyl radical production and organic contaminants degradation in oxygenation of pyrite.
    Huang M; Fang G; Chen N; Zhou D
    J Hazard Mater; 2022 May; 429():128380. PubMed ID: 35121297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced tetracycline abatement by peracetic acid activation with sulfidation of nanoscale zerovalent iron.
    Shao S; Zhang P; Chen Y; Zhao X
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):76157-76170. PubMed ID: 37231132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient utilization of the electron energy of antibiotics to accelerate Fe(III)/Fe(II) cycle in heterogeneous Fenton reaction induced by bamboo biochar/schwertmannite.
    Li T; Zhu P; Wang D; Zhang Z; Zhou L
    Environ Res; 2022 Jun; 209():112830. PubMed ID: 35093307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of Iron-Doped Anatase TiO
    Wang X; Lu W; Zhang S; Guo C; Yang K; Sun Y; Shao Y; Li Q; Bu M; Wu L; Wang B; Yang D
    Molecules; 2023 Oct; 28(19):. PubMed ID: 37836818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of pyrite FeS
    Ma C; Liu Y; Wang J; Evrard Deric NT; Li Y; Fan X; Peng W
    Chemosphere; 2024 May; 355():141799. PubMed ID: 38554876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced catalytic degradation of ciprofloxacin with FeS
    Diao ZH; Xu XR; Jiang D; Li G; Liu JJ; Kong LJ; Zuo LZ
    J Hazard Mater; 2017 Apr; 327():108-115. PubMed ID: 28049066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS
    Ahmed Y; Zhong J; Wang Z; Wang L; Yuan Z; Guo J
    Environ Sci Technol; 2022 Nov; 56(21):15156-15166. PubMed ID: 35759741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ generation of multi-homogeneous/heterogeneous Fe-based Fenton catalysts toward rapid degradation of organic pollutants at near neutral pH.
    Li X; Xiao B; Wu M; Wang L; Chen R; Wei Y; Liu H
    Chemosphere; 2020 Apr; 245():125663. PubMed ID: 31877454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal Synthesis of FeS2 as a High-Efficiency Fenton Reagent to Degrade Alachlor via Superoxide-Mediated Fe(II)/Fe(III) Cycle.
    Liu W; Wang Y; Ai Z; Zhang L
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28534-44. PubMed ID: 26646468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of iron-loaded granular activated carbon used as heterogeneous fenton catalyst for degradation of tetracycline.
    He Z; Xu X; Wang B; Lu Z; Shi D; Wu W
    J Environ Manage; 2022 Nov; 322():116077. PubMed ID: 36055098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ production and activation of H
    Li X; He J; Lu J; Zhou Y; Zhou Y
    J Hazard Mater; 2022 Feb; 424(Pt D):127650. PubMed ID: 34801302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective degradation of phenol via catalytic wet peroxide oxidation over N, S, and Fe-tridoped activated carbon.
    Yang G; Mo S; Xing B; Dong J; Song X; Liu X; Yuan J
    Environ Pollut; 2020 Mar; 258():113687. PubMed ID: 31812525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.