These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36368546)

  • 1. Interface hydrogen bonding dominated perfluorooctanoic acid (PFOA) accumulation by iron particles in drinking water pipes.
    Zhuang Y; Qin X; Shi B
    Chemosphere; 2023 Jan; 312(Pt 1):137211. PubMed ID: 36368546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced perfluorooctanoic acid (PFOA) accumulation by combination with in-situ formed Mn oxides under drinking water conditions.
    Chen R; Zhuang Y; Yu Y; Shi B
    Water Res; 2021 Feb; 190():116660. PubMed ID: 33279743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced toxicity effects of iron particles together with PFOA in drinking water.
    Qin X; Zhuang Y; Ma J; Liu S; Shi B
    Environ Pollut; 2022 Oct; 311():119919. PubMed ID: 35977639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfluorooctanoic Acid (PFOA) Incorporated into Iron Particles Promoted the Formation of Disinfection Byproducts under Drinking Water Conditions.
    Zhuang Y; Li D; Shi B
    Environ Sci Technol; 2023 Mar; 57(12):4863-4869. PubMed ID: 36917752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transformation and potential toxicity of iron-based deposits in drinking water distribution systems.
    Zhuang Y; Han B; Chen R; Shi B
    Water Res; 2019 Nov; 165():114999. PubMed ID: 31465995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of trichloroacetic acid on iron oxidation: Implications on the control of DBPs and deposits in drinking water.
    Zhuang Y; Shen C; Gu Y; Chen R; Shi B
    Water Res; 2021 Feb; 189():116632. PubMed ID: 33227611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.
    Sun H; Shi B; Yang F; Wang D
    Water Res; 2017 May; 114():69-77. PubMed ID: 28226251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient decomposition of perfluorooctanic acid by persulfate with iron-modified activated carbon.
    Lee YC; Li YF; Chen MJ; Chen YC; Kuo J; Lo SL
    Water Res; 2020 May; 174():115618. PubMed ID: 32088387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes.
    Yang F; Shi B; Bai Y; Sun H; Lytle DA; Wang D
    Water Res; 2014 Aug; 59():46-57. PubMed ID: 24784453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence and transport behaviors of perfluoroalkyl acids in drinking water distribution systems.
    Chen R; Li G; Yu Y; Ma X; Zhuang Y; Tao H; Shi B
    Sci Total Environ; 2019 Dec; 697():134162. PubMed ID: 31491637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of initial chlorine concentration on water quality change in old unlined iron pipes.
    Li D; Zhuang Y; Hua Y; Shi B
    Water Res; 2022 Oct; 225():119146. PubMed ID: 36183544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system.
    Yang F; Shi B; Gu J; Wang D; Yang M
    Water Res; 2012 Oct; 46(16):5423-33. PubMed ID: 22882957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption mechanisms on perfluorooctanoic acid by FeCl
    Ahn SK; Park KY; Song WJ; Park YM; Kweon JH
    Chemosphere; 2022 Sep; 303(Pt 2):134965. PubMed ID: 35588880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based investigation of the formation, transmission, and health risk of perfluorooctanoic acid, a member of PFASs group, in drinking water distribution systems.
    Abhijith GR; Ostfeld A
    Water Res; 2021 Oct; 204():117626. PubMed ID: 34517266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst.
    Li F; Wei Z; He K; Blaney L; Cheng X; Xu T; Liu W; Zhao D
    Water Res; 2020 Oct; 185():116219. PubMed ID: 32731078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system.
    Hu YB; Lo SL; Li YF; Lee YC; Chen MJ; Lin JC
    Water Res; 2018 Sep; 140():148-157. PubMed ID: 29704759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight.
    Liu D; Xiu Z; Liu F; Wu G; Adamson D; Newell C; Vikesland P; Tsai AL; Alvarez PJ
    J Hazard Mater; 2013 Nov; 262():456-63. PubMed ID: 24076481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and release profile of (Mn, Al)-bearing deposits in drinking water distribution systems.
    Li G; Ding Y; Xu H; Jin J; Shi B
    Chemosphere; 2018 Apr; 197():73-80. PubMed ID: 29331934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete Defluorination and Mineralization of Perfluorooctanoic Acid by a Mechanochemical Method Using Alumina and Persulfate.
    Wang N; Lv H; Zhou Y; Zhu L; Hu Y; Majima T; Tang H
    Environ Sci Technol; 2019 Jul; 53(14):8302-8313. PubMed ID: 31149813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced perfluorooctanoic acid degradation by electrochemical activation of peroxymonosulfate in aqueous solution.
    Wang K; Huang D; Wang W; Ji Y; Niu J
    Environ Int; 2020 Apr; 137():105562. PubMed ID: 32062439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.