BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36368631)

  • 1. Ontology-based surgical workflow recognition and prediction.
    Neumann J; Uciteli A; Meschke T; Bieck R; Franke S; Herre H; Neumuth T
    J Biomed Inform; 2022 Dec; 136():104240. PubMed ID: 36368631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending BPMN 2.0 for intraoperative workflow modeling with IEEE 11073 SDC for description and orchestration of interoperable, networked medical devices.
    Neumann J; Franke S; Rockstroh M; Kasparick M; Neumuth T
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1403-1413. PubMed ID: 31055764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase recognition.
    Katić D; Julliard C; Wekerle AL; Kenngott H; Müller-Stich BP; Dillmann R; Speidel S; Jannin P; Gibaud B
    Int J Comput Assist Radiol Surg; 2015 Sep; 10(9):1427-34. PubMed ID: 26062794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-perspective workflow modeling for online surgical situation models.
    Franke S; Meixensberger J; Neumuth T
    J Biomed Inform; 2015 Apr; 54():158-66. PubMed ID: 25752728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New technologies for information retrieval to achieve situational awareness and higher patient safety in the surgical operating room: the MRI institutional approach and review of the literature.
    Kranzfelder M; Schneider A; Gillen S; Feussner H
    Surg Endosc; 2011 Mar; 25(3):696-705. PubMed ID: 20721588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures.
    Lalys F; Bouget D; Riffaud L; Jannin P
    Int J Comput Assist Radiol Surg; 2013 Jan; 8(1):39-49. PubMed ID: 22528057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intelligent OR: design and validation of a context-aware surgical working environment.
    Franke S; Rockstroh M; Hofer M; Neumuth T
    Int J Comput Assist Radiol Surg; 2018 Aug; 13(8):1301-1308. PubMed ID: 29799108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic data-driven real-time segmentation and recognition of surgical workflow.
    Dergachyova O; Bouget D; Huaulmé A; Morandi X; Jannin P
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1081-9. PubMed ID: 26995598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Intelligent operating room suite : From passive medical devices to the self-thinking cognitive surgical assistant].
    Kenngott HG; Wagner M; Preukschas AA; Müller-Stich BP
    Chirurg; 2016 Dec; 87(12):1033-1038. PubMed ID: 27778059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an intelligent surgical training system for Thoracentesis.
    Nakawala H; Ferrigno G; De Momi E
    Artif Intell Med; 2018 Jan; 84():50-63. PubMed ID: 29169646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Against spatial-temporal discrepancy: contrastive learning-based network for surgical workflow recognition.
    Xia T; Jia F
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):839-848. PubMed ID: 33950398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of missing sensor information on surgical workflow management.
    Liebmann P; Meixensberger J; Wiedemann P; Neumuth T
    Int J Comput Assist Radiol Surg; 2013 Sep; 8(5):867-75. PubMed ID: 23468324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rule-based medical device adaptation for the digital operating room.
    Franke S; Neumuth T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1733-6. PubMed ID: 26736612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical workflow simulation for the design and assessment of operating room setups in orthopedic surgery.
    Neumann J; Angrick C; Höhn C; Zajonz D; Ghanem M; Roth A; Neumuth T
    BMC Med Inform Decis Mak; 2020 Jul; 20(1):145. PubMed ID: 32616031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-of-the-art of situation recognition systems for intraoperative procedures.
    Junger D; Frommer SM; Burgert O
    Med Biol Eng Comput; 2022 Apr; 60(4):921-939. PubMed ID: 35178622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-supervised learning with progressive unlabeled data excavation for label-efficient surgical workflow recognition.
    Shi X; Jin Y; Dou Q; Heng PA
    Med Image Anal; 2021 Oct; 73():102158. PubMed ID: 34325149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Deep-Onto" network for surgical workflow and context recognition.
    Nakawala H; Bianchi R; Pescatori LE; De Cobelli O; Ferrigno G; De Momi E
    Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):685-696. PubMed ID: 30443889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Automatic Ontology-Based Approach to Support Logical Representation of Observable and Measurable Data for Healthy Lifestyle Management: Proof-of-Concept Study.
    Chatterjee A; Prinz A; Gerdes M; Martinez S
    J Med Internet Res; 2021 Apr; 23(4):e24656. PubMed ID: 33835031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Augmented-Reality-Based Surgical Navigation System for Spine Surgery in a Hybrid Operating Room: Design, Workflow, and Clinical Applications.
    Edström E; Burström G; Nachabe R; Gerdhem P; Elmi Terander A
    Oper Neurosurg (Hagerstown); 2020 May; 18(5):496-502. PubMed ID: 31504859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning in Surgical Workflow Analysis: A Review of Phase and Step Recognition.
    Demir KC; Schieber H; Weise T; Roth D; May M; Maier A; Yang SH
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5405-5417. PubMed ID: 37665700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.