These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 36369004)

  • 1. A multi-dimensional framework for prosthetic embodiment: a perspective for translational research.
    Zbinden J; Lendaro E; Ortiz-Catalan M
    J Neuroeng Rehabil; 2022 Nov; 19(1):122. PubMed ID: 36369004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prosthetic embodiment: systematic review on definitions, measures, and experimental paradigms.
    Zbinden J; Lendaro E; Ortiz-Catalan M
    J Neuroeng Rehabil; 2022 Mar; 19(1):37. PubMed ID: 35346251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring embodiment: A review of methods for prosthetic devices.
    Segil JL; Roldan LM; Graczyk EL
    Front Neurorobot; 2022; 16():902162. PubMed ID: 36590084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanotactile Sensory Feedback Improves Embodiment of a Prosthetic Hand During Active Use.
    Shehata AW; Rehani M; Jassat ZE; Hebert JS
    Front Neurosci; 2020; 14():263. PubMed ID: 32273838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of invasive and non-invasive sensory feedback in upper limb prostheses.
    Svensson P; Wijk U; Björkman A; Antfolk C
    Expert Rev Med Devices; 2017 Jun; 14(6):439-447. PubMed ID: 28532184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor Control and Sensory Feedback Enhance Prosthesis Embodiment and Reduce Phantom Pain After Long-Term Hand Amputation.
    Page DM; George JA; Kluger DT; Duncan C; Wendelken S; Davis T; Hutchinson DT; Clark GA
    Front Hum Neurosci; 2018; 12():352. PubMed ID: 30319374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual correlates of successful body-prosthesis interaction in lower limb amputees: psychometric characterisation and development of the Prosthesis Embodiment Scale.
    Bekrater-Bodmann R
    Sci Rep; 2020 Aug; 10(1):14203. PubMed ID: 32848166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lightening the Perceived Prosthesis Weight with Neural Embodiment Promoted by Sensory Feedback.
    Preatoni G; Valle G; Petrini FM; Raspopovic S
    Curr Biol; 2021 Mar; 31(5):1065-1071.e4. PubMed ID: 33417885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grasping Embodiment: Haptic Feedback for Artificial Limbs.
    Moore CH; Corbin SF; Mayr R; Shockley K; Silva PL; Lorenz T
    Front Neurorobot; 2021; 15():662397. PubMed ID: 34122033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential experiences of embodiment between body-powered and myoelectric prosthesis users.
    Engdahl SM; Meehan SK; Gates DH
    Sci Rep; 2020 Sep; 10(1):15471. PubMed ID: 32963290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Developments in Prosthesis Sensors, Texture Recognition, and Sensory Stimulation for Upper Limb Prostheses.
    Masteller A; Sankar S; Kim HB; Ding K; Liu X; All AH
    Ann Biomed Eng; 2021 Jan; 49(1):57-74. PubMed ID: 33140242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of transcutaneous electrical nerve stimulation (TENS) to aid perceptual embodiment of prosthetic limbs.
    Mulvey MR; Fawkner HJ; Radford H; Johnson MI
    Med Hypotheses; 2009 Feb; 72(2):140-2. PubMed ID: 19026493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embodied prosthetic arm stabilizes body posture, while unembodied one perturbs it.
    Imaizumi S; Asai T; Koyama S
    Conscious Cogn; 2016 Oct; 45():75-88. PubMed ID: 27580459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis.
    Schiefer M; Tan D; Sidek SM; Tyler DJ
    J Neural Eng; 2016 Feb; 13(1):016001. PubMed ID: 26643802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Enhanced Teleoperation Through Embodiment.
    Toet A; Kuling IA; Krom BN; van Erp JBF
    Front Robot AI; 2020; 7():14. PubMed ID: 33501183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mind over matter: Perceived phantom/prosthesis co-location contributes to prosthesis embodiment in lower limb amputees.
    Bekrater-Bodmann R
    Conscious Cogn; 2022 Feb; 98():103268. PubMed ID: 34999318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving internal model strength and performance of prosthetic hands using augmented feedback.
    Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW
    J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors Associated With Prosthesis Embodiment and Its Importance for Prosthetic Satisfaction in Lower Limb Amputees.
    Bekrater-Bodmann R
    Front Neurorobot; 2020; 14():604376. PubMed ID: 33519413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Embodiment of a Virtual Hand in a Spatially Augmented Respiratory Biofeedback Setting.
    Barresi G; Marinelli A; Caserta G; de Zambotti M; Tessadori J; Angioletti L; Boccardo N; Freddolini M; Mazzanti D; Deshpande N; Frigo CA; Balconi M; Gruppioni E; Laffranchi M; De Michieli L
    Front Neurorobot; 2021; 15():683653. PubMed ID: 34557082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benefits of the Cybathlon 2020 experience for a prosthetic hand user: a case study on the Hannes system.
    Caserta G; Boccardo N; Freddolini M; Barresi G; Marinelli A; Canepa M; Stedman S; Lombardi L; Laffranchi M; Gruppioni E; De Michieli L
    J Neuroeng Rehabil; 2022 Jul; 19(1):68. PubMed ID: 35787721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.