These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36369266)

  • 1. Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source.
    Gholami H; Mohammadifar A
    Sci Rep; 2022 Nov; 12(1):19342. PubMed ID: 36369266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic and extrinsic techniques for quantification uncertainty of an interpretable GRU deep learning model used to predict atmospheric total suspended particulates (TSP) in Zabol, Iran during the dusty period of 120-days wind.
    Gholami H; Mohammadifar A; Behrooz RD; Kaskaoutis DG; Li Y; Song Y
    Environ Pollut; 2024 Feb; 342():123082. PubMed ID: 38061429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretability of simple RNN and GRU deep learning models used to map land susceptibility to gully erosion.
    Gholami H; Mohammadifar A; Golzari S; Song Y; Pradhan B
    Sci Total Environ; 2023 Dec; 904():166960. PubMed ID: 37696396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection.
    Ahmad S; Ullah T; Ahmad I; Al-Sharabi A; Ullah K; Khan RA; Rasheed S; Ullah I; Uddin MN; Ali MS
    Comput Intell Neurosci; 2022; 2022():8141530. PubMed ID: 35785076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance.
    Lu H; Ehwerhemuepha L; Rakovski C
    BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting water quality variable using deep learning and weighted averaging ensemble models.
    Zamani MG; Nikoo MR; Jahanshahi S; Barzegar R; Meydani A
    Environ Sci Pollut Res Int; 2023 Dec; 30(59):124316-124340. PubMed ID: 37996598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
    Khademi Z; Ebrahimi F; Kordy HM
    Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Groundwater Burial Depth Prediction Model Based on Two-Stage Modal Decomposition and Deep Learning.
    Zhang X; Zheng Z
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking- and voting-based ensemble deep learning models (SEDL and VEDL) and active learning (AL) for mapping land subsidence.
    Mohammadifar A; Gholami H; Golzari S
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26580-26595. PubMed ID: 36369445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge deep learning for neural implants: a case study of seizure detection and prediction.
    Liu X; Richardson AG
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33794507
    [No Abstract]   [Full Text] [Related]  

  • 11. Hybrid COVID-19 segmentation and recognition framework (HMB-HCF) using deep learning and genetic algorithms.
    Balaha HM; Balaha MH; Ali HA
    Artif Intell Med; 2021 Sep; 119():102156. PubMed ID: 34531015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interpretable deep learning model to map land subsidence hazard.
    Rahmani P; Gholami H; Golzari S
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):17448-17460. PubMed ID: 38340298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced convolutional neural network for plankton identification and enumeration.
    Cheng K; Cheng X; Wang Y; Bi H; Benfield MC
    PLoS One; 2019; 14(7):e0219570. PubMed ID: 31291356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control list of high-priority chemicals based on 5-HT-RI functionality and the human health interference effects selective CNN-GRU deep learning model.
    Sun P; Zhao W
    Sci Total Environ; 2024 Mar; 915():169699. PubMed ID: 38181943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated 3D CNN-GRU deep learning method for short-term prediction of PM2.5 concentration in urban environment.
    Faraji M; Nadi S; Ghaffarpasand O; Homayoni S; Downey K
    Sci Total Environ; 2022 Aug; 834():155324. PubMed ID: 35452742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial modelling of soil salinity: deep or shallow learning models?
    Mohammadifar A; Gholami H; Golzari S; Collins AL
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):39432-39450. PubMed ID: 33759096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miTAR: a hybrid deep learning-based approach for predicting miRNA targets.
    Gu T; Zhao X; Barbazuk WB; Lee JH
    BMC Bioinformatics; 2021 Feb; 22(1):96. PubMed ID: 33639834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel convolution bi-directional gated recurrent unit neural network for emotion recognition in multichannel electroencephalogram signals.
    Abgeena A; Garg S
    Technol Health Care; 2023; 31(4):1215-1234. PubMed ID: 36617799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stock prediction based on bidirectional gated recurrent unit with convolutional neural network and feature selection.
    Zhou Q; Zhou C; Wang X
    PLoS One; 2022; 17(2):e0262501. PubMed ID: 35120138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.