BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36369514)

  • 1. Collagen piezoelectricity in osteogenesis imperfecta and its role in intrafibrillar mineralization.
    Kwon J; Cho H
    Commun Biol; 2022 Nov; 5(1):1229. PubMed ID: 36369514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy.
    Kwon J; Cho H
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6680-6689. PubMed ID: 33320620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility.
    Maghsoudi-Ganjeh M; Samuel J; Ahsan AS; Wang X; Zeng X
    J Mech Behav Biomed Mater; 2021 May; 117():104377. PubMed ID: 33636677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridinium cross-links in bone of patients with osteogenesis imperfecta: evidence of a normal intrafibrillar collagen packing.
    Bank RA; Tekoppele JM; Janus GJ; Wassen MH; Pruijs HE; Van der Sluijs HA; Sakkers RJ
    J Bone Miner Res; 2000 Jul; 15(7):1330-6. PubMed ID: 10893681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations.
    Roschger P; Fratzl-Zelman N; Misof BM; Glorieux FH; Klaushofer K; Rauch F
    Calcif Tissue Int; 2008 Apr; 82(4):263-70. PubMed ID: 18311573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone.
    Fratzl-Zelman N; Schmidt I; Roschger P; Roschger A; Glorieux FH; Klaushofer K; Wagermaier W; Rauch F; Fratzl P
    Bone; 2015 Apr; 73():233-41. PubMed ID: 25554599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro.
    Shen M; Lin M; Zhu M; Zhang W; Lu D; Liu H; Deng J; Que K; Zhang X
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):167-181. PubMed ID: 30312770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of prenucleation clusters in calcium phosphate mineralization of collagen.
    Ma YX; Hoff SE; Huang XQ; Liu J; Wan QQ; Song Q; Gu JT; Heinz H; Tay FR; Niu LN
    Acta Biomater; 2021 Jan; 120():213-223. PubMed ID: 32711082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment.
    Bi X; Grafe I; Ding H; Flores R; Munivez E; Jiang MM; Dawson B; Lee B; Ambrose CG
    J Bone Miner Res; 2017 Feb; 32(2):347-359. PubMed ID: 27649409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Biomimetic Scaffolds with Both Intrafibrillar and Extrafibrillar Mineralization.
    Hu C; Zhang L; Wei M
    ACS Biomater Sci Eng; 2015 Aug; 1(8):669-676. PubMed ID: 33435090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrafibrillar mineralization of type I collagen by micelle-loaded amorphous calcium phosphate nanoparticles.
    Xie H; Sun J; Xie F; He S
    RSC Adv; 2023 Apr; 13(17):11733-11741. PubMed ID: 37063712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular investigations of the prenucleation mechanism of bone-like apatite assisted by type I collagen nanofibrils: insights into intrafibrillar mineralization.
    Xue Z; Wang X; Xu D
    Phys Chem Chem Phys; 2022 Aug; 24(31):18931-18942. PubMed ID: 35916012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the amorphous phase on the biomimetic mineralization of collagen.
    Nudelman F; Bomans PH; George A; de With G; Sommerdijk NA
    Faraday Discuss; 2012; 159():357-370. PubMed ID: 25383016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects.
    Wang Y; Van Manh N; Wang H; Zhong X; Zhang X; Li C
    Int J Nanomedicine; 2016; 11():2053-67. PubMed ID: 27274235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronic acid-mediated collagen intrafibrillar mineralization and enhancement of dentin remineralization.
    Wu H; Shao C; Shi J; Hu Z; Zhou Y; Chen Z; Tang R; Xie Z; Jin W
    Carbohydr Polym; 2023 Nov; 319():121174. PubMed ID: 37567692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrafibrillar Mineralization of Self-Assembled Elastin-Like Recombinamer Fibrils.
    Li Y; Rodriguez-Cabello JC; Aparicio C
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5838-5846. PubMed ID: 28127954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancing dentin remineralization: Exploring amorphous calcium phosphate and its stabilizers in biomimetic approaches.
    Yang Q; Zheng W; Zhao Y; Shi Y; Wang Y; Sun H; Xu X
    Dent Mater; 2024 Jun; ():. PubMed ID: 38871525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure.
    Hu C; Zilm M; Wei M
    J Biomed Mater Res A; 2016 May; 104(5):1153-61. PubMed ID: 26748775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrafibrillar Mineralization and Immunomodulatory for Synergetic Enhancement of Bone Regeneration via Calcium Phosphate Nanocluster Scaffold.
    Zhou Y; Hu Z; Jin W; Wu H; Zuo M; Shao C; Lan Y; Shi Y; Tang R; Chen Z; Xie Z; Shi J
    Adv Healthc Mater; 2023 May; 12(12):e2201548. PubMed ID: 36867636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.
    Imbert L; Aurégan JC; Pernelle K; Hoc T
    Bone; 2014 Aug; 65():18-24. PubMed ID: 24803077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.