These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36369613)

  • 1. Multimodal multi-task deep neural network framework for kinase-target prediction.
    Hua Y; Luo L; Qiu H; Huang D; Zhao Y; Liu H; Lu T; Chen Y; Zhang Y; Jiang Y
    Mol Divers; 2023 Dec; 27(6):2491-2503. PubMed ID: 36369613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of multi-task learning by data enrichment: application for drug discovery.
    Sosnina EA; Sosnin S; Fedorov MV
    J Comput Aided Mol Des; 2023 Apr; 37(4):183-200. PubMed ID: 36943645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interpretable machine learning model for selectivity of small-molecules against homologous protein family.
    Vangala SR; Bung N; Krishnan SR; Roy A
    Future Med Chem; 2022 Oct; 14(20):1441-1453. PubMed ID: 36169035
    [No Abstract]   [Full Text] [Related]  

  • 5. The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform.
    Ma W; Hu J; Chen Z; Ai Y; Zhang Y; Dong K; Meng X; Liu L
    J Chem Inf Model; 2024 Oct; 64(19):7273-7290. PubMed ID: 39320984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis of kinase inhibitor selectivity using structural knowledge.
    Lo YC; Liu T; Morrissey KM; Kakiuchi-Kiyota S; Johnson AR; Broccatelli F; Zhong Y; Joshi A; Altman RB
    Bioinformatics; 2019 Jan; 35(2):235-242. PubMed ID: 29985971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRMCF: Binary Relevance and MLSMOTE Based Computational Framework to Predict Drug Functions From Chemical and Biological Properties of Drugs.
    Das P; Thakran Y; Anal SRN; Pal V; Yadav A
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1761-1773. PubMed ID: 36260591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale comparison of machine learning methods for profiling prediction of kinase inhibitors.
    Wu J; Chen Y; Wu J; Zhao D; Huang J; Lin M; Wang L
    J Cheminform; 2024 Jan; 16(1):13. PubMed ID: 38291477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepFusionDTA: Drug-Target Binding Affinity Prediction With Information Fusion and Hybrid Deep-Learning Ensemble Model.
    Pu Y; Li J; Tang J; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2760-2769. PubMed ID: 34379594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinome-Wide Virtual Screening by Multi-Task Deep Learning.
    Hu J; Allen BK; Stathias V; Ayad NG; Schürer SC
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal deep representation learning for protein interaction identification and protein family classification.
    Zhang D; Kabuka M
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):531. PubMed ID: 31787089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved compound-protein interaction site and binding affinity prediction using self-supervised protein embeddings.
    Wu J; Liu Z; Yang X; Lin Z
    BMC Bioinformatics; 2022 Dec; 23(1):543. PubMed ID: 36526969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions.
    Song T; Zhang X; Ding M; Rodriguez-Paton A; Wang S; Wang G
    Methods; 2022 Aug; 204():269-277. PubMed ID: 35219861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMPDTA: An End-to-End Multimodal Representation Learning Framework with Pocket Online Detection for Drug-Target Affinity Prediction.
    Huang D; Xie J
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DMFDDI: deep multimodal fusion for drug-drug interaction prediction.
    Gan Y; Liu W; Xu G; Yan C; Zou G
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectively Identifying Compound-Protein Interaction Using Graph Neural Representation.
    Lin X; Quan Z; Wang ZJ; Guo Y; Zeng X; Yu PS
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):932-943. PubMed ID: 35951570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.