BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36369686)

  • 1. Combined effects of photoaging and natural organic matter on the colloidal stability of nanoplastics in aquatic environments.
    Xu Y; Ou Q; Li X; Wang X; van der Hoek JP; Liu G
    Water Res; 2022 Nov; 226():119313. PubMed ID: 36369686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure Order to Photoaging and Humic Acids Significantly Modifies the Aggregation and Transformation of Nanoplastics in Aqueous Solutions.
    Lian F; Han Y; Zhang Y; Li J; Sun B; Geng Z; Wang Z; Xing B
    Environ Sci Technol; 2023 Apr; 57(16):6520-6529. PubMed ID: 37043333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of environmental and biological macromolecules on aggregation kinetics of nanoplastics in aquatic systems.
    Liu Y; Huang Z; Zhou J; Tang J; Yang C; Chen C; Huang W; Dang Z
    Water Res; 2020 Nov; 186():116316. PubMed ID: 32829180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of different modes of adsorption of natural organic matter on the environmental fate of nanoplastics.
    Wu J; Jiang R; Liu Q; Ouyang G
    Chemosphere; 2021 Jan; 263():127967. PubMed ID: 33297026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of CeO
    Li X; He E; Xia B; Van Gestel CAM; Peijnenburg WJGM; Cao X; Qiu H
    Water Res; 2020 Nov; 186():116324. PubMed ID: 32871291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments.
    Chen C; Wei J; Li J; Duan Z; Huang W
    Environ Pollut; 2019 Sep; 252(Pt B):1892-1901. PubMed ID: 31227348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation behavior of polystyrene nanoplastics: Role of surface functional groups and protein and electrolyte variation.
    Guo Y; Tang N; Lu L; Li N; Hu T; Guo J; Zhang J; Zeng Z; Liang J
    Chemosphere; 2024 Feb; 350():140998. PubMed ID: 38142881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment.
    Huang Z; Chen C; Liu Y; Liu S; Zeng D; Yang C; Huang W; Dang Z
    Water Res; 2022 Jul; 219():118522. PubMed ID: 35550965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters.
    Wang J; Zhao X; Wu A; Tang Z; Niu L; Wu F; Wang F; Zhao T; Fu Z
    Environ Pollut; 2021 Jan; 268(Pt A):114240. PubMed ID: 33152633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reciprocal effects of NOM and solution electrolyte ions on aggregation of ferrihydrite nanoparticles.
    Li Z; Hu Y; Chen Y; Fang S; Liu Y; Tang W; Chen J
    Chemosphere; 2023 Aug; 332():138918. PubMed ID: 37178934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Organic Matter (NOM) Imparts Molecular-Weight-Dependent Steric Stabilization or Electrostatic Destabilization to Ferrihydrite Nanoparticles.
    Li Z; Shakiba S; Deng N; Chen J; Louie SM; Hu Y
    Environ Sci Technol; 2020 Jun; 54(11):6761-6770. PubMed ID: 32250111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.
    Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F
    Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the colloidal stability of graphene oxide in aquatic environment: Interplays of photoaging and proteins.
    Sun B; Zhang Y; Li R; Wang K; Xiao B; Yang Y; Wang J; Zhu L
    Water Res; 2021 Jul; 200():117213. PubMed ID: 34015575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deposition behaviors of carboxyl-modified polystyrene nanoplastics with goethite in aquatic environment: Effects of solution chemistry and organic macromolecules.
    Xie R; Xing X; Nie X; Ma X; Wan Q; Chen Q; Li Z; Wang J
    Sci Total Environ; 2023 Dec; 904():166783. PubMed ID: 37666342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sediment organic carbon dominates the heteroaggregation of suspended sediment and nanoplastics in natural and surfactant-polluted aquatic environments.
    Peng L; Wang Y
    J Hazard Mater; 2022 Oct; 440():129802. PubMed ID: 36007369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Photoaging Effects on Colored Nanoplastics in Aquatic Environments: Physicochemical Properties and Aggregation Kinetics.
    Su J; Ruan J; Luo D; Wang J; Huang Z; Yang X; Zhang Y; Zeng Q; Li Y; Huang W; Cui L; Chen C
    Environ Sci Technol; 2023 Oct; 57(41):15656-15666. PubMed ID: 37747788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation kinetics and stability of biodegradable nanoplastics in aquatic environments: Effects of UV-weathering and proteins.
    Yu Y; Astner AF; Zahid TM; Chowdhury I; Hayes DG; Flury M
    Water Res; 2023 Jul; 239():120018. PubMed ID: 37201372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes.
    Saleh NB; Pfefferle LD; Elimelech M
    Environ Sci Technol; 2010 Apr; 44(7):2412-8. PubMed ID: 20184360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation kinetics of biochar nanoparticles in aqueous environment: Interplays of anion type and bovine serum albumin.
    Yang W; Li B; Shang J
    Sci Total Environ; 2022 Aug; 833():155148. PubMed ID: 35405228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics.
    Li X; He E; Jiang K; Peijnenburg WJGM; Qiu H
    Water Res; 2021 Feb; 190():116742. PubMed ID: 33348070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.