BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36370231)

  • 1. Exploring the mechanics of fundamental frequency variation during phonation onset.
    Serry MA; Stepp CE; Peterson SD
    Biomech Model Mechanobiol; 2023 Feb; 22(1):339-356. PubMed ID: 36370231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated effects of cricothyroid and thyroarytenoid muscle activation on adult-male vocal fold vibration.
    Lowell SY; Story BH
    J Acoust Soc Am; 2006 Jul; 120(1):386-97. PubMed ID: 16875234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cricothyroid muscle in voicing control.
    Löfqvist A; Baer T; McGarr NS; Story RS
    J Acoust Soc Am; 1989 Mar; 85(3):1314-21. PubMed ID: 2708673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the influence of the extrinsic musculature on phonation.
    Serry MA; Alzamendi GA; Zañartu M; Peterson SD
    Biomech Model Mechanobiol; 2023 Aug; 22(4):1365-1378. PubMed ID: 37169957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function of the thyroarytenoid muscle in a canine laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):769-76. PubMed ID: 8215096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies.
    Yin J; Zhang Z
    J Acoust Soc Am; 2013 May; 133(5):2972-83. PubMed ID: 23654401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics of phonation offset: Towards understanding relative fundamental frequency observations.
    Serry MA; Stepp CE; Peterson SD
    J Acoust Soc Am; 2021 May; 149(5):3654. PubMed ID: 34241131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of consonant manner and vowel height on intraoral pressure and articulatory contact at voicing offset and onset for voiceless obstruents.
    Koenig LL; Fuchs S; Lucero JC
    J Acoust Soc Am; 2011 May; 129(5):3233-44. PubMed ID: 21568425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model.
    Owaki S; Kataoka H; Shimizu T
    J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular control of fundamental frequency and glottal posture at phonation onset.
    Chhetri DK; Neubauer J; Berry DA
    J Acoust Soc Am; 2012 Feb; 131(2):1401-12. PubMed ID: 22352513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonation Threshold Pressure Revisited: Effects of Intrinsic Laryngeal Muscle Activation.
    Azar SS; Chhetri DK
    Laryngoscope; 2022 Jul; 132(7):1427-1432. PubMed ID: 34784055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative regulation of vocal fold morphology and stress by the cricothyroid and thyroarytenoid muscles.
    Deguchi S; Kawahara Y; Takahashi S
    J Voice; 2011 Nov; 25(6):e255-63. PubMed ID: 21550776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rules for controlling low-dimensional vocal fold models with muscle activation.
    Titze IR; Story BH
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1064-76. PubMed ID: 12243155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current topics in voice production mechanisms.
    Titze IR
    Acta Otolaryngol; 1993 May; 113(3):421-7. PubMed ID: 8517148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of phonation in the excised canine larynx.
    Yanagi E; Slavit DH; McCaffrey TV
    Otolaryngol Head Neck Surg; 1991 Oct; 105(4):586-95. PubMed ID: 1762795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restraining mechanisms in regulating glottal closure during phonation.
    Zhang Z
    J Acoust Soc Am; 2011 Dec; 130(6):4010-9. PubMed ID: 22225055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of strap muscles in phonation--in vivo canine laryngeal model.
    Hong KH; Ye M; Kim YM; Kevorkian KF; Berke GS
    J Voice; 1997 Mar; 11(1):23-32. PubMed ID: 9075173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative model of voice F0 control.
    Farley GR
    J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.