BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36370268)

  • 1. Identification of Protein Interaction Partners in Bacteria Using Affinity Purification and SILAC Quantitative Proteomics.
    Kopeckova M; Link M; Pavkova I
    Methods Mol Biol; 2023; 2603():31-42. PubMed ID: 36370268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of protein interaction partners in mammalian cells using SILAC-immunoprecipitation quantitative proteomics.
    Emmott E; Goodfellow I
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25046639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing SILAC- and stable isotope dimethyl-labeling approaches for quantitative proteomics.
    Lau HT; Suh HW; Golkowski M; Ong SE
    J Proteome Res; 2014 Sep; 13(9):4164-74. PubMed ID: 25077673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Substrate Trapping for the Detection of Transient Protein Interactions.
    Duda JM; Thomas SN
    Methods Mol Biol; 2023; 2603():219-234. PubMed ID: 36370283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics.
    Geiger T; Wisniewski JR; Cox J; Zanivan S; Kruger M; Ishihama Y; Mann M
    Nat Protoc; 2011 Feb; 6(2):147-57. PubMed ID: 21293456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using affinity purification coupled with stable isotope labeling by amino acids in cell culture quantitative mass spectrometry to identify novel interactors/substrates of protein arginine methyltransferases.
    Morettin A; Bourassa J; Mahadevan K; Trinkle-Mulcahy L; Cote J
    Methods; 2020 Mar; 175():44-52. PubMed ID: 31794835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved SILAC method for double labeling of bacterial proteome.
    Han J; Yi S; Zhao X; Zheng Y; Yang D; Du G; Yang XY; He QY; Sun X
    J Proteomics; 2019 Mar; 194():89-98. PubMed ID: 30553074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying SILAC for the differential analysis of protein complexes.
    Boldt K; Gloeckner CJ; Texier Y; von Zweydorf F; Ueffing M
    Methods Mol Biol; 2014; 1188():177-90. PubMed ID: 25059612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protocol for the identification of protein-protein interactions based on 15N metabolic labeling, immunoprecipitation, quantitative mass spectrometry and affinity modulation.
    Schmollinger S; Strenkert D; Offeddu V; Nordhues A; Sommer F; Schroda M
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking stable isotope labeling based quantitative proteomics.
    Altelaar AF; Frese CK; Preisinger C; Hennrich ML; Schram AW; Timmers HT; Heck AJ; Mohammed S
    J Proteomics; 2013 Aug; 88():14-26. PubMed ID: 23085607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined proximity labeling and affinity purification-mass spectrometry workflow for mapping and visualizing protein interaction networks.
    Liu X; Salokas K; Weldatsadik RG; Gawriyski L; Varjosalo M
    Nat Protoc; 2020 Oct; 15(10):3182-3211. PubMed ID: 32778839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SILAC-iPAC: a quantitative method for distinguishing genuine from non-specific components of protein complexes by parallel affinity capture.
    Rees JS; Lilley KS; Jackson AP
    J Proteomics; 2015 Feb; 115():143-56. PubMed ID: 25534881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network.
    Guerrero C; Tagwerker C; Kaiser P; Huang L
    Mol Cell Proteomics; 2006 Feb; 5(2):366-78. PubMed ID: 16284124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SILAC labeling of yeast for the study of membrane protein complexes.
    Oeljeklaus S; Schummer A; Suppanz I; Warscheid B
    Methods Mol Biol; 2014; 1188():23-46. PubMed ID: 25059602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the Global Changes in SH2 Binding Properties Using Mass Spectrometry Supported by Quantitative Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technique.
    Sobota RM
    Methods Mol Biol; 2017; 1555():419-428. PubMed ID: 28092047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Bacterial Protein Interaction Partners Points to New Intracellular Functions of
    Kopeckova M; Pavkova I; Link M; Rehulka P; Stulik J
    Front Microbiol; 2020; 11():576618. PubMed ID: 33013814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining dynamic protein interactions using SILAC-based quantitative mass spectrometry.
    Wang X; Huang L
    Methods Mol Biol; 2014; 1188():191-205. PubMed ID: 25059613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SILAC-Based Quantitative Phosphoproteomics in Yeast.
    Hernáez ML; Gil C
    Methods Mol Biol; 2023; 2603():103-115. PubMed ID: 36370273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in stable isotope labeling: dynamic labeling for spatial and temporal proteomic analysis.
    Beller NC; Hummon AB
    Mol Omics; 2022 Aug; 18(7):579-590. PubMed ID: 35723214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast.
    Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE; Maček B
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.prot091686. PubMed ID: 28572185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.