BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36370268)

  • 21. Intelligent Mixing of Proteomes for Elimination of False Positives in Affinity Purification-Mass Spectrometry.
    Eyckerman S; Impens F; Van Quickelberghe E; Samyn N; Vandemoortele G; De Sutter D; Tavernier J; Gevaert K
    J Proteome Res; 2016 Oct; 15(10):3929-3937. PubMed ID: 27640904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unbiased RNA-protein interaction screen by quantitative proteomics.
    Butter F; Scheibe M; Mörl M; Mann M
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10626-31. PubMed ID: 19541640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporating DNA shearing in standard affinity purification allows simultaneous identification of both soluble and chromatin-bound interaction partners.
    Lambert JP; Tucholska M; Pawson T; Gingras AC
    J Proteomics; 2014 Apr; 100():55-9. PubMed ID: 24412199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stable isotope labeling by amino acids in cell culture for quantitative proteomics.
    Ong SE; Mann M
    Methods Mol Biol; 2007; 359():37-52. PubMed ID: 17484109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Testing Suitability of Cell Cultures for SILAC-Experiments Using SWATH-Mass Spectrometry.
    Reinders Y; Völler D; Bosserhoff AK; Oefner PJ; Reinders J
    Methods Mol Biol; 2016; 1394():101-108. PubMed ID: 26700044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue Extracts for Quantitative Mass Spectrometry of Planarian Proteins Using SILAC.
    Böser A; Drexler HCA; Bartscherer K
    Methods Mol Biol; 2018; 1774():539-553. PubMed ID: 29916177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rare cell proteomic reactor applied to stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics study of human embryonic stem cell differentiation.
    Tian R; Wang S; Elisma F; Li L; Zhou H; Wang L; Figeys D
    Mol Cell Proteomics; 2011 Feb; 10(2):M110.000679. PubMed ID: 20530636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative proteomics by stable isotope labeling and mass spectrometry.
    Pan S; Aebersold R
    Methods Mol Biol; 2007; 367():209-18. PubMed ID: 17185778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative proteomics using stable isotope labeling with amino acids in cell culture.
    Harsha HC; Molina H; Pandey A
    Nat Protoc; 2008; 3(3):505-16. PubMed ID: 18323819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast.
    Maček B; Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.top079814. PubMed ID: 28572211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes.
    Munday DC; Surtees R; Emmott E; Dove BK; Digard P; Barr JN; Whitehouse A; Matthews D; Hiscox JA
    Proteomics; 2012 Feb; 12(4-5):666-72. PubMed ID: 22246955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics.
    Hoedt E; Zhang G; Neubert TA
    Adv Exp Med Biol; 2019; 1140():531-539. PubMed ID: 31347069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomics meets genetics: SILAC labeling of Drosophila melanogaster larvae and cells for in vivo functional studies.
    Cuomo A; Sanfilippo R; Vaccari T; Bonaldi T
    Methods Mol Biol; 2014; 1188():293-311. PubMed ID: 25059620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable isotope labeling with amino acids in cell culture based mass spectrometry approach to detect transient protein interactions using substrate trapping.
    Thomas SN; Wan Y; Liao Z; Hanson PI; Yang AJ
    Anal Chem; 2011 Jul; 83(14):5511-8. PubMed ID: 21619060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative top-down proteomics of SILAC labeled human embryonic stem cells.
    Collier TS; Sarkar P; Rao B; Muddiman DC
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):879-89. PubMed ID: 20199872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying in vivo, site-specific changes in protein methylation with SILAC.
    Lau HT; Lewis KA; Ong SE
    Methods Mol Biol; 2014; 1188():161-75. PubMed ID: 25059611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable isotope labeling by amino acids applied to bacterial cell culture.
    Soufi B; Macek B
    Methods Mol Biol; 2014; 1188():9-22. PubMed ID: 25059601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying nuclear protein-protein interactions using GFP affinity purification and SILAC-based quantitative mass spectrometry.
    Baymaz HI; Spruijt CG; Vermeulen M
    Methods Mol Biol; 2014; 1188():207-26. PubMed ID: 25059614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production and use of stable isotope-labeled proteins for absolute quantitative proteomics.
    Lebert D; Dupuis A; Garin J; Bruley C; Brun V
    Methods Mol Biol; 2011; 753():93-115. PubMed ID: 21604118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.