BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36370271)

  • 1. Comparative SUMO Proteome Analysis Using Stable Isotopic Labeling by Amino Acids (SILAC).
    Chachami G; Barysch SV
    Methods Mol Biol; 2023; 2603():71-86. PubMed ID: 36370271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer.
    Lopitz-Otsoa F; Delgado TC; Lachiondo-Ortega S; Azkargorta M; Elortza F; Rodríguez MS; Martínez-Chantar ML
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31736480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Substrates of Protein-Group SUMOylation.
    Psakhye I; Jentsch S
    Methods Mol Biol; 2016; 1475():219-31. PubMed ID: 27631809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Sumo proteome of proliferating and neuronal-differentiating cells reveals Utf1 among key Sumo targets involved in neurogenesis.
    Correa-Vázquez JF; Juárez-Vicente F; García-Gutiérrez P; Barysch SV; Melchior F; García-Domínguez M
    Cell Death Dis; 2021 Mar; 12(4):305. PubMed ID: 33753728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen.
    Chachami G; Stankovic-Valentin N; Karagiota A; Basagianni A; Plessmann U; Urlaub H; Melchior F; Simos G
    Mol Cell Proteomics; 2019 Jun; 18(6):1197-1209. PubMed ID: 30926672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of SUMO target proteins by quantitative proteomics.
    Andersen JS; Matic I; Vertegaal AC
    Methods Mol Biol; 2009; 497():19-31. PubMed ID: 19107408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. System-wide identification of wild-type SUMO-2 conjugation sites.
    Hendriks IA; D'Souza RC; Chang JG; Mann M; Vertegaal AC
    Nat Commun; 2015 Jun; 6():7289. PubMed ID: 26073453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of oxygen/glucose-deprivation-induced changes in SUMO3 conjugation using SILAC-based quantitative proteomics.
    Yang W; Thompson JW; Wang Z; Wang L; Sheng H; Foster MW; Moseley MA; Paschen W
    J Proteome Res; 2012 Feb; 11(2):1108-17. PubMed ID: 22082260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in novel small ubiquitin-like modifier transgenic mice: putative protective proteins/pathways.
    Yang W; Sheng H; Thompson JW; Zhao S; Wang L; Miao P; Liu X; Moseley MA; Paschen W
    Stroke; 2014 Apr; 45(4):1115-22. PubMed ID: 24569813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Sumoylation.
    Breucker J; Pichler A
    Methods Mol Biol; 2019; 1934():223-233. PubMed ID: 31256382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific characterization of endogenous SUMOylation across species and organs.
    Hendriks IA; Lyon D; Su D; Skotte NH; Daniel JA; Jensen LJ; Nielsen ML
    Nat Commun; 2018 Jun; 9(1):2456. PubMed ID: 29942033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling the Murine SUMO Proteome in Response to Cardiac Ischemia and Reperfusion Injury.
    Hotz PW; Wiesnet M; Tascher G; Braun T; Müller S; Mendler L
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33260959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-wide identification of SUMO2 modification sites.
    Tammsalu T; Matic I; Jaffray EG; Ibrahim AFM; Tatham MH; Hay RT
    Sci Signal; 2014 Apr; 7(323):rs2. PubMed ID: 24782567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting endogenous SUMO targets in mammalian cells and tissues.
    Becker J; Barysch SV; Karaca S; Dittner C; Hsiao HH; Berriel Diaz M; Herzig S; Urlaub H; Melchior F
    Nat Struct Mol Biol; 2013 Apr; 20(4):525-31. PubMed ID: 23503365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic revelation: SUMO changes partners when the heat is on.
    Flick K; Kaiser P
    Sci Signal; 2009 Jul; 2(81):pe45. PubMed ID: 19638612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions.
    Lumpkin RJ; Gu H; Zhu Y; Leonard M; Ahmad AS; Clauser KR; Meyer JG; Bennett EJ; Komives EA
    Nat Commun; 2017 Oct; 8(1):1171. PubMed ID: 29079793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody-free enrichment method for proteome-wide analysis of endogenous SUMOylation sites.
    Li Y; Sun M; Hu Y; Shan Y; Liang Z; Zhang L; Zhang Y
    Anal Chim Acta; 2021 Apr; 1154():338324. PubMed ID: 33736815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics.
    Westman BJ; Lamond AI
    Nucleus; 2011; 2(1):30-7. PubMed ID: 21647297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the Role of Paralog-Specific Sumoylation of HDAC1.
    Citro S; Chiocca S
    Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of endogenous SUMO1 accepter sites by mass spectrometry.
    Hsiao HH; Meulmeester E; Urlaub H
    Methods Mol Biol; 2012; 893():431-41. PubMed ID: 22665316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.