BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36370286)

  • 1. SILAC-IodoTMT for Assessment of the Cellular Proteome and Its Redox Status.
    Vajrychova M; Salovska B; Pimkova K; Fabrik I; Hodny Z
    Methods Mol Biol; 2023; 2603():259-268. PubMed ID: 36370286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology.
    Vajrychova M; Salovska B; Pimkova K; Fabrik I; Tambor V; Kondelova A; Bartek J; Hodny Z
    Redox Biol; 2019 Jun; 24():101227. PubMed ID: 31154163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.
    Giese J; Eirich J; Post F; Schwarzländer M; Finkemeier I
    Methods Mol Biol; 2022; 2363():215-234. PubMed ID: 34545496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS.
    Zhang HH; Lechuga TJ; Chen Y; Yang Y; Huang L; Chen DB
    Biol Reprod; 2016 May; 94(5):114. PubMed ID: 27075618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of the Ubiquitinome in Cells Undergoing Oncogene-Induced Senescence.
    Zhu H; Le L; Tang HY; Speicher DW; Zhang R
    Methods Mol Biol; 2017; 1534():127-137. PubMed ID: 27812874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-wide quantitation by SILAC.
    Rigbolt KT; Blagoev B
    Methods Mol Biol; 2010; 658():187-204. PubMed ID: 20839105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SILAC-Based Comparative Proteomic Analysis of Lysosomes from Mammalian Cells Using LC-MS/MS.
    Thelen M; Winter D; Braulke T; Gieselmann V
    Methods Mol Biol; 2017; 1594():1-18. PubMed ID: 28456973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global ubiquitination analysis by SILAC in mammalian cells.
    Wu Z; Na CH; Tan H; Peng J
    Methods Mol Biol; 2014; 1188():149-60. PubMed ID: 25059610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy Methyl SILAC Metabolic Labeling of Human Cell Lines for High-Confidence Identification of R/K-Methylated Peptides by High-Resolution Mass Spectrometry.
    Massignani E; Maniaci M; Bonaldi T
    Methods Mol Biol; 2023; 2603():173-186. PubMed ID: 36370279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometric-based quantitative proteomics using SILAC.
    Lanucara F; Eyers CE
    Methods Enzymol; 2011; 500():133-50. PubMed ID: 21943896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Factors Produced and Secreted by Mesenchymal Stromal Cells with the SILAC Method.
    Rocha B; Calamia V; Blanco FJ; Ruiz-Romero C
    Methods Mol Biol; 2016; 1416():551-65. PubMed ID: 27236695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoproteomic Profiling of Geranyl Pyrophosphate-Binding Proteins.
    Cai R; Wang Y
    Methods Mol Biol; 2023; 2603():127-138. PubMed ID: 36370275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing Suitability of Cell Cultures for SILAC-Experiments Using SWATH-Mass Spectrometry.
    Reinders Y; Völler D; Bosserhoff AK; Oefner PJ; Reinders J
    Methods Mol Biol; 2016; 1394():101-108. PubMed ID: 26700044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mix-and-Match Proteomics: Using Advanced Iodoacetyl Tandem Mass Tag Multiplexing To Investigate Cysteine Oxidation Changes with Respect to Protein Expression.
    Prakash AS; Kabli AMF; Bulleid N; Burchmore R
    Anal Chem; 2018 Dec; 90(24):14173-14180. PubMed ID: 30452864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.
    Gritsenko MA; Xu Z; Liu T; Smith RD
    Methods Mol Biol; 2016; 1410():237-47. PubMed ID: 26867748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SILAC Based Proteomic Characterization of Exosomes from HIV-1 Infected Cells.
    Cheruiyot C; Pataki Z; Williams R; Ramratnam B; Li M
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28287540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry.
    Bai B; Tan H; Pagala VR; High AA; Ichhaporia VP; Hendershot L; Peng J
    Methods Enzymol; 2017; 585():377-395. PubMed ID: 28109439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down identification and quantification of stable isotope labeled proteins from Aspergillus flavus using online nano-flow reversed-phase liquid chromatography coupled to a LTQ-FTICR mass spectrometer.
    Collier TS; Hawkridge AM; Georgianna DR; Payne GA; Muddiman DC
    Anal Chem; 2008 Jul; 80(13):4994-5001. PubMed ID: 18512951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomic analysis of exosome protein content changes induced by hepatitis B virus in Huh-7 cells using SILAC labeling and LC-MS/MS.
    Zhao X; Wu Y; Duan J; Ma Y; Shen Z; Wei L; Cui X; Zhang J; Xie Y; Liu J
    J Proteome Res; 2014 Dec; 13(12):5391-402. PubMed ID: 25265333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking stable isotope labeling based quantitative proteomics.
    Altelaar AF; Frese CK; Preisinger C; Hennrich ML; Schram AW; Timmers HT; Heck AJ; Mohammed S
    J Proteomics; 2013 Aug; 88():14-26. PubMed ID: 23085607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.