BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 36370471)

  • 1. Characterization of photoneutron fluxes emitted by electron accelerators in the 4-20 MeV range using Monte Carlo codes: A critical review.
    Sari A
    Appl Radiat Isot; 2023 Jan; 191():110506. PubMed ID: 36370471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoneutron yields from tungsten in the energy range of the giant dipole resonance.
    Akkurt I; Adler JO; Annand JR; Fasolo F; Hansen K; Isaksson L; Karlsson M; Lilja P; Lundin M; Nilsson B; Ongaro C; Reiter A; Rosner G; Sandell A; Schröder B; Zanini A
    Phys Med Biol; 2003 Oct; 48(20):3345-52. PubMed ID: 14620062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the photoneutron generation caused by a LinAc Beryllium window with a 6 MeV treatment beam.
    Juste B; Morato S; Salvat A; Miro R; Verdu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4150-4153. PubMed ID: 30441269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo study of Siemens PRIMUS photoneutron production.
    Pena J; Franco L; Gómez F; Iglesias A; Pardo J; Pombar M
    Phys Med Biol; 2005 Dec; 50(24):5921-33. PubMed ID: 16333164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the neutron radiation field and air activation around a medical electron linac.
    Horst F; Fehrenbacher G; Zink K
    Radiat Prot Dosimetry; 2017 Apr; 174(2):147-158. PubMed ID: 27170731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron distribution and induced activity inside a Linac treatment room.
    Juste B; Miró R; Verdú G; Díez S; Campayo JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6896-9. PubMed ID: 26737878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of photoneutron yield in linear accelerator with different collimation systems by Geant4 and MCNPX simulation codes.
    Kim YS; Khazaei Z; Ko J; Afarideh H; Ghergherehchi M
    Phys Med Biol; 2016 Apr; 61(7):2762-79. PubMed ID: 26975304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TOPAS simulation of photoneutrons in radiotherapy: accuracy and speed with variance reduction.
    Ramos-Mendez J; Ortiz CR; Schuemann J; Paganetti H; Faddegon B
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38657630
    [No Abstract]   [Full Text] [Related]  

  • 9. Bremsstrahlung and Photoneutron leakage from steel shielding board impinged by 12-24 MeV electrons beams.
    Fujita Y; Saitoh H; Myojoyama A
    J Radiat Res; 2009 Jul; 50(4):363-9. PubMed ID: 19542692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of neutron activation simulation of a varian medical linear accelerator.
    Morato S; Juste B; Miro R; Verdu G; Diez S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5656-5659. PubMed ID: 28269538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linac
    Martinez-Ovalle SA; Sajo-Bohus L; Sajo-Castelli AM
    Appl Radiat Isot; 2022 Oct; 188():110360. PubMed ID: 35839709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the photoneutron target geometry for e-accelerator based BNCT.
    Chegeni N; Pur SB; Razmjoo S; Hoseini SK
    Electron Physician; 2017 Jun; 9(6):4590-4596. PubMed ID: 28848635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of photoneutron spectra produced in medical accelerators.
    Ongaro C; Zanini A; Nastasi U; Ródenas J; Ottaviano G; Manfredotti C; Burn KW
    Phys Med Biol; 2000 Dec; 45(12):L55-61. PubMed ID: 11131205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoneutron contamination from an 18 MV Saturne medical linear accelerator in the treatment room.
    Khosravi M; Shahbazi-Gahrouei D; Jabbari K; Nasri-Nasrabadi M; Baradaran-Ghahfarokhi M; Siavashpour Z; Gheisari R; Amiri B
    Radiat Prot Dosimetry; 2013 Sep; 156(3):356-63. PubMed ID: 23538892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the effectiveness of steel for shielding photoneutrons produced in medical linear accelerators: A Monte Carlo particle transport study.
    Moghaddasi L; Colyer C
    Phys Med; 2022 Jun; 98():53-62. PubMed ID: 35490530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems.
    Zanini A; Durisi E; Fasolo F; Ongaro C; Visca L; Nastasi U; Burn KW; Scielzo G; Adler JO; Annand JR; Rosner G
    Phys Med Biol; 2004 Feb; 49(4):571-82. PubMed ID: 15005166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of the photoneutron contamination present in a high-energy radiotherapy treatment room.
    Garnica-Garza HM
    Phys Med Biol; 2005 Feb; 50(3):531-9. PubMed ID: 15773728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New target with low photoneutron yield for LINAC radiotherapy applications.
    Rojas-Arias N; Sajo-Bohus L; Tolosa-Cetina JO; Sandoval-Garzón MA; Martinez-Ovalle SA
    Appl Radiat Isot; 2020 Aug; 162():109142. PubMed ID: 32501224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation of scattered and thermal photoneutron fluences inside a radiotherapy room.
    Facure A; Da Silva AX; Falcão RC
    Radiat Prot Dosimetry; 2007; 123(1):56-61. PubMed ID: 16815885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doses to patients from photoneutrons emitted in a medical linear accelerator.
    Saeed MK; Moustafa O; Yasin OA; Tuniz C; Habbani FI
    Radiat Prot Dosimetry; 2009 Feb; 133(3):130-5. PubMed ID: 19287045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.