These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
684 related articles for article (PubMed ID: 36370629)
41. Multiple internal standard normalization for improving HS-SPME-GC-MS quantitation in virgin olive oil volatile organic compounds (VOO-VOCs) profile. Fortini M; Migliorini M; Cherubini C; Cecchi L; Calamai L Talanta; 2017 Apr; 165():641-652. PubMed ID: 28153311 [TBL] [Abstract][Full Text] [Related]
42. Gas Chromatography-Mass Spectrometry Analysis of Volatile Organic Compounds from Three Endemic Friščić M; Maleš Ž; Maleš I; Duka I; Radonić A; Mitić B; Hruševar D; Jurić S; Jerković I Molecules; 2024 Aug; 29(17):. PubMed ID: 39274954 [No Abstract] [Full Text] [Related]
43. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens. Souza Silva ÉA; Saboia G; Jorge NC; Hoffmann C; Dos Santos Isaias RM; Soares GLG; Zini CA Talanta; 2017 Dec; 175():9-20. PubMed ID: 28842040 [TBL] [Abstract][Full Text] [Related]
44. Acquisition of Volatile Compounds by Gas Chromatography-Mass Spectrometry (GC-MS). Vallarino JG; Erban A; Fehrle I; Fernie AR; Kopka J; Osorio S Methods Mol Biol; 2018; 1778():225-239. PubMed ID: 29761442 [TBL] [Abstract][Full Text] [Related]
46. Development of solid-phase microextraction followed by gas chromatography-mass spectrometry for rapid analysis of volatile organic chemicals in mainstream cigarette smoke. Ye Q J Chromatogr A; 2008 Dec; 1213(2):239-44. PubMed ID: 18992893 [TBL] [Abstract][Full Text] [Related]
47. Analysis of volatile compounds from Siraitia grosvenorii by headspace solid-phase microextraction and gas chromatography-quadrupole time-of-flight mass spectrometry. Xia Y; Zhang F; Wang W; Guo Y J Chromatogr Sci; 2015 Jan; 53(1):1-7. PubMed ID: 24668041 [TBL] [Abstract][Full Text] [Related]
48. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Le T; Priefer R Talanta; 2023 Dec; 265():124767. PubMed ID: 37327663 [TBL] [Abstract][Full Text] [Related]
49. Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography-mass spectrometry. Rodrigues D; Pinto J; Araújo AM; Monteiro-Reis S; Jerónimo C; Henrique R; de Lourdes Bastos M; de Pinho PG; Carvalho M Metabolomics; 2018 Apr; 14(5):62. PubMed ID: 30830384 [TBL] [Abstract][Full Text] [Related]
50. Preparation of novel alumina nanowire solid-phase microextraction fiber coating for ultra-selective determination of volatile esters and alcohols from complicated food samples. Zhang Z; Ma Y; Wang Q; Chen A; Pan Z; Li G J Chromatogr A; 2013 May; 1290():27-35. PubMed ID: 23582855 [TBL] [Abstract][Full Text] [Related]
51. Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Trujillo-Rodríguez MJ; Yu H; Cole WT; Ho TD; Pino V; Anderson JL; Afonso AM Talanta; 2014 Apr; 121():153-62. PubMed ID: 24607122 [TBL] [Abstract][Full Text] [Related]
52. Fabrication of an SPME fiber based on ZnO@GA nanorods coated onto fused silica as a highly efficient absorbent for the analysis of cancer VOCs in water and urine. Naseri N; Kharrazi S; Abdi K; Alizadeh R Anal Chim Acta; 2021 Oct; 1183():338983. PubMed ID: 34627504 [TBL] [Abstract][Full Text] [Related]
53. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. Xiao Z; Dai S; Niu Y; Yu H; Zhu J; Tian H; Gu Y J Food Sci; 2011 Oct; 76(8):C1125-35. PubMed ID: 22417575 [TBL] [Abstract][Full Text] [Related]
54. Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato. Zhang R; Tang C; Jiang B; Mo X; Wang Z Molecules; 2021 Sep; 26(19):. PubMed ID: 34641353 [TBL] [Abstract][Full Text] [Related]
55. Simultaneous analysis of 22 volatile organic compounds in cigarette smoke using gas sampling bags for high-throughput solid-phase microextraction. Sampson MM; Chambers DM; Pazo DY; Moliere F; Blount BC; Watson CH Anal Chem; 2014 Jul; 86(14):7088-95. PubMed ID: 24933649 [TBL] [Abstract][Full Text] [Related]
56. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS. Guo Y; Chen D; Dong Y; Ju H; Wu C; Lin S J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Nov; 1099():46-55. PubMed ID: 30241073 [TBL] [Abstract][Full Text] [Related]
57. Analysis of volatile components of cape gooseberry (Physalis peruviana L.) grown in Turkey by HS-SPME and GC-MS. Yilmaztekin M ScientificWorldJournal; 2014; 2014():796097. PubMed ID: 24741358 [TBL] [Abstract][Full Text] [Related]
58. A new HS-SPME-GC-MS analytical method to identify and quantify compounds responsible for changes in the volatile profile in five types of meat products during aerobic storage at 4 °C. Acquaticci L; Angeloni S; Baldassarri C; Sagratini G; Vittori S; Torregiani E; Petrelli R; Caprioli G Food Res Int; 2024 Jul; 187():114398. PubMed ID: 38763656 [TBL] [Abstract][Full Text] [Related]
59. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry. Lattuati-Derieux A; Thao-Heu S; Lavédrine B J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901 [TBL] [Abstract][Full Text] [Related]
60. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS). Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]