These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36370788)

  • 21. Spatial, temporal, and biological factors influencing plant responses to deicing salt in roadside bioinfiltration basins.
    Caplan JS; Salisbury AB; McKenzie ER; Behbahani A; Eisenman SW
    J Environ Manage; 2024 May; 359():120761. PubMed ID: 38703641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling multi-year phosphorus dynamics in a bioretention cell: Phosphorus partitioning, accumulation, and export.
    Zhou B; Shafii M; Parsons CT; Passeport E; Rezanezhad F; Lisogorsky A; Van Cappellen P
    Sci Total Environ; 2023 Jun; 876():162749. PubMed ID: 36906029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Urban Runoff Phosphorus Removal Pathways in Bioretention Systems].
    Li LQ; Liu YQ; Yang JM; Wang J
    Huan Jing Ke Xue; 2018 Jul; 39(7):3150-3157. PubMed ID: 29962138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bibliometric analysis of global research on bioretention from 2007 to 2021.
    Liu Y; Shen C; Li Z
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73087-73097. PubMed ID: 37204577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stormwater volume reduction and water quality improvement by bioretention: Potentials and challenges for water security in a subtropical catchment.
    de Macedo MB; do Lago CAF; Mendiondo EM
    Sci Total Environ; 2019 Jan; 647():923-931. PubMed ID: 30096680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered bioretention for removal of nitrate from stormwater runoff.
    Kim H; Seagren EA; Davis AP
    Water Environ Res; 2003; 75(4):355-67. PubMed ID: 12934829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cadmium removal from urban stormwater runoff via bioretention technology and effluent risk assessment for discharge to surface water.
    Wang J; Zhang P; Yang L; Huang T
    J Contam Hydrol; 2016; 185-186():42-50. PubMed ID: 26826541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coal gangue modified bioretention system for runoff pollutants removal and the biological characteristics.
    Zhang H; Zhang X; Liu J; Zhang L; Li G; Zhang Z; Gong Y; Li H; Li J
    J Environ Manage; 2022 Jul; 314():115044. PubMed ID: 35427943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laboratory study of biological retention for urban stormwater management.
    Davis AP; Shokouhian M; Sharma H; Minami C
    Water Environ Res; 2001; 73(1):5-14. PubMed ID: 11558302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioretention performance under different rainfall regimes in subtropical conditions: A case study in São Carlos, Brazil.
    Batalini de Macedo M; Ambrogi Ferreira do Lago C; Mendiondo EM; Giacomoni MH
    J Environ Manage; 2019 Oct; 248():109266. PubMed ID: 31330273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water quality improvement through bioretention: lead, copper, and zinc removal.
    Davis AP; Shokouhian M; Sharma H; Minami C; Winogradoff D
    Water Environ Res; 2003; 75(1):73-82. PubMed ID: 12683466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment on the cumulative effect of pollutants and the evolution of micro-ecosystems in bioretention systems with different media.
    Zhang Z; Li J; Li Y; Wang D; Zhang J; Zhao L
    Ecotoxicol Environ Saf; 2021 Nov; 228():112957. PubMed ID: 34775342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioretention systems for stormwater management: Recent advances and future prospects.
    Vijayaraghavan K; Biswal BK; Adam MG; Soh SH; Tsen-Tieng DL; Davis AP; Chew SH; Tan PY; Babovic V; Balasubramanian R
    J Environ Manage; 2021 Aug; 292():112766. PubMed ID: 33984642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Combination of Ecological Ditch and Bioretention Pond to Control Rural Runoff Pollution].
    Shi L; Yang XL; Wu QY; Wang YM; Xu JY
    Huan Jing Ke Xue; 2022 Jun; 43(6):3160-3167. PubMed ID: 35686785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment.
    Mehmood T; Gaurav GK; Cheng L; Klemeš JJ; Usman M; Bokhari A; Lu J
    J Environ Manage; 2021 Sep; 294():113108. PubMed ID: 34218074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Urban stormwater runoff nitrogen composition and fate in bioretention systems.
    Li L; Davis AP
    Environ Sci Technol; 2014 Mar; 48(6):3403-10. PubMed ID: 24571092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal and release of microplastics and other environmental pollutants during the start-up of bioretention filters treating stormwater.
    Johansson G; Fedje KK; Modin O; Haeger-Eugensson M; Uhl W; Andersson-Sköld Y; Strömvall AM
    J Hazard Mater; 2024 Apr; 468():133532. PubMed ID: 38387172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioretention planter performance measured by lag and capture.
    Nissen KA; Borst M; Fassman-Beck E
    Hydrol Process; 2020 Dec; 34(25):5176-5184. PubMed ID: 33627939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fate of naphthalene in laboratory-scale bioretention cells: implications for sustainable stormwater management.
    Lefevre GH; Novak PJ; Hozalski RM
    Environ Sci Technol; 2012 Jan; 46(2):995-1002. PubMed ID: 22175538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An event-based hydrologic simulation model for bioretention systems.
    Roy-Poirier A; Filion Y; Champagne P
    Water Sci Technol; 2015; 72(9):1524-33. PubMed ID: 26524443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.