BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36370854)

  • 1. Synergistic effect of poly(ionic liquid) and phosphoramide on flame retardancy and crystallization of poly(lactic acid).
    Li C; Wang B; Yang Y; Chai J; Guo Z; Fang Z; Chen P; Li J
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1344-1355. PubMed ID: 36370854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of phosphoramide derivatives in flame retardancy, thermal degradation and crystallization behaviors of polylactic acid.
    Hu X; Wang B; Guo Z; Fang Z; Chen P; Li J
    Int J Biol Macromol; 2022 Oct; 219():558-570. PubMed ID: 35907467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial silicon‑nitrogen aerogel raise flame retardancy of bamboo fiber reinforced polylactic acid composites.
    Niu Q; Yue X; Cao W; Guo Z; Fang Z; Chen P; Li J
    Int J Biol Macromol; 2022 Dec; 222(Pt B):2697-2708. PubMed ID: 36228818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of renewable furan-based phosphate and the superior flame retardancy in biodegradable polylactide.
    Li D; Tu Z; Wang B; Li M; Jia Z; Wei Z
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130435. PubMed ID: 38408585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame Retardancy and Thermal Property of Environment-Friendly Poly(lactic acid) Composites Based on Banana Peel Powder.
    Kong F; Nie B; Han C; Zhao D; Hou Y; Xu Y
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomass phosphonamide enables biodegradable polylactide with favorable flame retardancy and rapid crystallization.
    Li D; Li M; Jia Z; Wei Z
    Int J Biol Macromol; 2024 Jun; 274(Pt 1):133365. PubMed ID: 38914410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic Flame Retardancy of Phosphatized Sesbania Gum/Ammonium Polyphosphate on Polylactic Acid.
    Zhang Q; Liu H; Guan J; Yang X; Luo B
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flame-retardant poly(L-lactic acid) with enhanced UV protection and well-preserved mechanical properties by a furan-containing polyphosphoramide.
    Yu L; Huo S; Wang C; Ye G; Song P; Feng J; Fang Z; Wang H; Liu Z
    Int J Biol Macromol; 2023 Apr; 234():123707. PubMed ID: 36796568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneously enhancing the crystallization rate and fire retardancy of poly(lactic acid) by using a novel bifunctional additive trimethylamine phenylphosphonate.
    Jin Q; Tian GQ; He R; Gu HL; Wu F; Zhu J
    RSC Adv; 2021 Aug; 11(44):27346-27355. PubMed ID: 35480655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of multifunctional highly-efficient bio-based fire-retardant poly(lactic acid) composites for simultaneously improving thermal, crystallization and fire safety properties.
    Xiao D; Lv JX; Wu FJ; Wang ZB; Harre K; Chen JH; Gohs U; Wang DY
    Int J Biol Macromol; 2022 Aug; 215():646-656. PubMed ID: 35777508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a Novel Flame Retardant on the Mechanical, Thermal and Combustion Properties of Poly(Lactic Acid).
    Niu M; Zhang Z; Wei Z; Wang W
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33086626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of phosphorus-doped chitosan derivative and its applications in polylactic acid: Crystallization, flame retardancy, anti-dripping and mechanical properties.
    Liu L; Wang Y; Cheng C; Lyu S; Zhu Z
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130648. PubMed ID: 38460640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flame Retardancy and Toughness of Poly(Lactic Acid)/GNR/SiAHP Composites.
    Wu N; Yu J; Lang W; Ma X; Yang Y
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites.
    Chen C; Gu X; Jin X; Sun J; Zhang S
    Carbohydr Polym; 2017 Feb; 157():1586-1593. PubMed ID: 27987872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable thermoset poly(lactic acid) resin containing phosphorus: Flame retardancy, mechanical properties and its soil degradation behavior.
    He J; Yu T; Li Y
    Int J Biol Macromol; 2023 Apr; 235():123737. PubMed ID: 36805506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Enhancement of Flame Retardancy Behavior of Glass-Fiber Reinforced Polylactide Composites through Using Phosphorus-Based Flame Retardants and Chain Modifiers.
    Yargici Kovanci C; Nofar M; Ghanbari A
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Dihydroxy-Containing Ammonium Phosphate Based Poly(Lactic Acid): Synthesis, Characterization and Flame Retardancy.
    Jian RK; Xia L; Ai YF; Wang DY
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-light polylactic acid/combination composite foam: A fully biodegradable flame retardant material.
    Jia L; Huang W; Zhao Y; Wen S; Yu Z; Zhang Z
    Int J Biol Macromol; 2022 Nov; 220():754-765. PubMed ID: 35985399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane.
    Zhu S; Gong W; Luo J; Meng X; Xin Z; Wu J; Jiang Z
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31382664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced fire-proofing performance and crystallizability of bio-based poly(L-lactic acid): Dual functions of a Schiff base-containing synergistic flame retardant.
    Wu J; Yin Z; Sun X; Zhang X; Zhu Z; Xu Z; Yang J; Xie Z; Li Y; Yang X; Huang Q; Liu J; Wang J
    Int J Biol Macromol; 2022 Dec; 222(Pt A):305-324. PubMed ID: 36150571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.