These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 36370975)
1. Versatile crosslinking synthesis of an EDTA-modified UiO-66-NH Gao Y; Yao L; Zhang S; Yue Q; Yin W Environ Pollut; 2023 Jan; 316(Pt 2):120622. PubMed ID: 36370975 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater. Verma M; Lee I; Hong Y; Kumar V; Kim H Environ Pollut; 2022 Jan; 292(Pt B):118447. PubMed ID: 34742823 [TBL] [Abstract][Full Text] [Related]
3. EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes. Zhao F; Repo E; Yin D; Meng Y; Jafari S; Sillanpää M Environ Sci Technol; 2015 Sep; 49(17):10570-80. PubMed ID: 26237660 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of cellulose cotton-based UiO-66 MOFs for the removal of rhodamine B and Pb(II) metal ions from contaminated wastewater. Yang H; Zhang P; Zheng Q; Hameed MU; Raza S Int J Biol Macromol; 2023 Dec; 253(Pt 4):126986. PubMed ID: 37739285 [TBL] [Abstract][Full Text] [Related]
5. Selective adsorption and separation of dyes from aqueous solution by core-shell structured NH Yang Z; Zhu L; Chen L J Colloid Interface Sci; 2019 Mar; 539():76-86. PubMed ID: 30576990 [TBL] [Abstract][Full Text] [Related]
6. Synergistically active Fe Yang H; Zhang P; Zheng Q; Nie G; Hayat A; Bajaber MA; Raza S; Li D; Sui Y Int J Biol Macromol; 2024 Aug; 274(Pt 1):132996. PubMed ID: 38906343 [TBL] [Abstract][Full Text] [Related]
7. A versatile EDTA and chitosan bi-functionalized magnetic bamboo biochar for simultaneous removal of methyl orange and heavy metals from complex wastewater. Zhang H; Li R; Zhang Z Environ Pollut; 2022 Jan; 293():118517. PubMed ID: 34801624 [TBL] [Abstract][Full Text] [Related]
8. Zr-Metal Organic Framework and Derivatives for Adsorptive and Photocatalytic Removal of Acid Dyes. Lin KA; Yang H; Hsu FK Water Environ Res; 2018 Feb; 90(2):144-154. PubMed ID: 29348001 [TBL] [Abstract][Full Text] [Related]
9. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Huang L; He M; Chen B; Hu B Chemosphere; 2018 May; 199():435-444. PubMed ID: 29453070 [TBL] [Abstract][Full Text] [Related]
10. Selective removal of heavy metals by Zr-based MOFs in wastewater: New acid and amino functionalization strategy. Chen P; Wang Y; Zhuang X; Liu H; Liu G; Lv W J Environ Sci (China); 2023 Feb; 124():268-280. PubMed ID: 36182136 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of synthesis methods and pH-dependent adsorption of methylene blue dye on UiO-66 and NH Daneshgar H; Sojdeh S; Salehi G; Edrisi M; Bagherzadeh M; Rabiee N Chemosphere; 2024 Apr; 353():141543. PubMed ID: 38447898 [TBL] [Abstract][Full Text] [Related]
12. Green synthesis of lignin-directed palladium nanoparticles/UiO-66-NH Zhang L; Huang Y; Zhang J; Zhu E; Ma J; Wang Z Int J Biol Macromol; 2024 Jan; 255():128187. PubMed ID: 37977467 [TBL] [Abstract][Full Text] [Related]
13. Preparation of UiO-66-NH Li S; Feng F; Chen S; Zhang X; Liang Y; Shan S Ecotoxicol Environ Saf; 2020 May; 194():110440. PubMed ID: 32169729 [TBL] [Abstract][Full Text] [Related]
14. In Situ Generated UiO-66/Cotton Fabric Easily Recyclable for Reactive Dye Adsorption. Zhang S; Lu X; Liu X; Fang K; Gong J; Si J; Gao W; Liu D Langmuir; 2022 Oct; 38(39):12095-12102. PubMed ID: 36150189 [TBL] [Abstract][Full Text] [Related]
15. Comparative study for removal of cationic and anionic dyes using alginate-based hydrogels filled with citric acid-sawdust/UiO-66-NH Mallakpour S; Sirous F; Dinari M Int J Biol Macromol; 2023 May; 238():124034. PubMed ID: 36924868 [TBL] [Abstract][Full Text] [Related]
16. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Ahmadijokani F; Tajahmadi S; Bahi A; Molavi H; Rezakazemi M; Ko F; Aminabhavi TM; Arjmand M Chemosphere; 2021 Feb; 264(Pt 2):128466. PubMed ID: 33065327 [TBL] [Abstract][Full Text] [Related]
17. Hierarchical-pore UiO-66-NH Luo L; Huang H; Heng Y; Shi R; Wang W; Yang B; Zhong C J Colloid Interface Sci; 2022 Dec; 628(Pt A):705-716. PubMed ID: 35944301 [TBL] [Abstract][Full Text] [Related]
18. In situ growth of UiO-66-NH Tian S; Yi Z; Chen J; Fu S J Hazard Mater; 2023 Feb; 443(Pt B):130236. PubMed ID: 36332282 [TBL] [Abstract][Full Text] [Related]
19. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. Ru J; Wang X; Wang F; Cui X; Du X; Lu X Ecotoxicol Environ Saf; 2021 Jan; 208():111577. PubMed ID: 33160184 [TBL] [Abstract][Full Text] [Related]
20. Facile immobilization of ethylenediamine tetramethylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: An experimental and theoretical exploration. Yan Y; Chu Y; Khan MA; Xia M; Shi M; Zhu S; Lei W; Wang F Sci Total Environ; 2022 Feb; 806(Pt 3):150652. PubMed ID: 34610397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]