These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 363710)
1. The primary structure of Escherichia coli K12 aspartokinase I-homoserine dehydrogenase I. Site of limited proteolytic cleavage by subtilisin. Briley PA; Sibilli L; Chalvignac MA; Cossart P; Le Bras G; De Wolf A; Cohen GN J Biol Chem; 1978 Dec; 253(24):8867-71. PubMed ID: 363710 [TBL] [Abstract][Full Text] [Related]
2. Two regions of the bifunctional protein aspartokinase I- homoserine dehydrogenase I are connected by a short hinge. Sibilli L; Le Bras G; Le Bras G; Cohen GN J Biol Chem; 1981 Oct; 256(20):10228-30. PubMed ID: 7026556 [TBL] [Abstract][Full Text] [Related]
3. Isolation of the aspartokinase domain of bifunctional aspartokinase I-homoserine dehydrogenase I from E.coli K12. Veron M; Guillou Y; Cohen GN FEBS Lett; 1985 Feb; 181(2):381-4. PubMed ID: 2982665 [TBL] [Abstract][Full Text] [Related]
4. Proteolysis of the bifunctional methionine-repressible aspartokinase II-homoserine dehydrogenase II of Escherichia coli K12. Production of an active homoserine dehydrogenase fragment. Dautry-Varsat A; Cohen GN J Biol Chem; 1977 Nov; 252(21):7685-9. PubMed ID: 334767 [TBL] [Abstract][Full Text] [Related]
5. The primary structure of Escherichia coli K12 aspartokinase I-homoserine dehydrogenase I-Isolation and characterisation of the peptides produced by cyanogen bromide. Cossart-Gheerbrant P; Sibilli-Weill L; Briley PA; Chalvignac MA; Le Bras G; Cohen GN Biochim Biophys Acta; 1978 Aug; 535(2):206-15. PubMed ID: 354697 [TBL] [Abstract][Full Text] [Related]
6. The primary structure of Escherichia coli K 12 aspartokinase I-homoserine dehydrogenase I : sequence of cyanogen bromide peptide CB 3. Sibilli L; Le Bras G; Cossart P; Chalvignac MA; Le Bras G; Briley PA; Cohen GN Biochimie; 1979; 61(5-6):733-9. PubMed ID: 387092 [No Abstract] [Full Text] [Related]
7. Subunit structure of the methionine-repressible aspartokinase II--homoserine dehydrogenase II from Escherichia coli K12. Dautry-Varsat A; Sibilli-Weill L; Cohen GN Eur J Biochem; 1977 Jun; 76(1):1-6. PubMed ID: 328280 [TBL] [Abstract][Full Text] [Related]
8. The primary structure of Escherichia coli K12 aspartokinase I-homoserine dehydrogenase I. Distribution of the methioninyl residues and of the cysteinyl and tryptophanyl tryptic peptides. Sibilli L; Cossart P; Chalvignac MA; Briley PA; Costrejean JM; Le Bras G; Cohen GN Biochimie; 1977; 59(11-12):943-6. PubMed ID: 343821 [No Abstract] [Full Text] [Related]
9. A triglobular model for the polypeptide chain of aspartokinase I-homoserine dehydrogenase I of Escherichia coli. Fazel A; Müller K; Le Bras G; Garel JR; Véron M; Cohen GN Biochemistry; 1983 Jan; 22(1):158-65. PubMed ID: 6338915 [TBL] [Abstract][Full Text] [Related]
10. Reversible dissociation of aspartokinase I/homoserine dehydrogenase I from Escherichia coli K 12. The active species is the tetramer. Veron M; Guillou Y; Fazel A; Cohen GN Eur J Biochem; 1985 Sep; 151(3):521-4. PubMed ID: 3896789 [TBL] [Abstract][Full Text] [Related]
11. E. coli aspartokinase II-homoserine dehydrogenase II polypeptide chain has a triglobular structure. Belfaiza J; Fazel A; Müller K; Cohen GN Biochem Biophys Res Commun; 1984 Aug; 123(1):16-20. PubMed ID: 6383377 [TBL] [Abstract][Full Text] [Related]
12. Characterization of proteolysis fragments of aspartokinase I: homoserine dehydrogenase I. Fluorescence and circular dichroism studies. McMahon PL; Takahashi M J Biol Chem; 1983 Nov; 258(21):12934-9. PubMed ID: 6355098 [TBL] [Abstract][Full Text] [Related]
13. Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. Zakin MM; Duchange N; Ferrara P; Cohen GN J Biol Chem; 1983 Mar; 258(5):3028-31. PubMed ID: 6298218 [No Abstract] [Full Text] [Related]
14. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Carboxymethylation of the enzyme: threonine binding and inhibition are functionally dissociable. Fontan E; Truffa-Bachi P J Biol Chem; 1978 Apr; 253(8):2754-7. PubMed ID: 344322 [TBL] [Abstract][Full Text] [Related]
15. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Carboxymethylation of a unique cysteine induces a conformational change of the enzyme. Fontan E; Truffa-Bachi P J Biol Chem; 1978 Apr; 253(8):2758-62. PubMed ID: 344323 [No Abstract] [Full Text] [Related]
17. Folding of aspartokinase-homoserine dehydrogenase I is dominated by tertiary interactions. Müller K; Garel JR Biochemistry; 1984 Feb; 23(4):655-60. PubMed ID: 6370303 [TBL] [Abstract][Full Text] [Related]
18. Threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Kinetic and spectroscopic effects upon binding of serine and threonine. Costrejean JM; Truffa-Bachi P J Biol Chem; 1977 Aug; 252(15):5332-6. PubMed ID: 328500 [TBL] [Abstract][Full Text] [Related]
19. Identification and expression of a cDNA from Daucus carota encoding a bifunctional aspartokinase-homoserine dehydrogenase. Weisemann JM; Matthews BF Plant Mol Biol; 1993 May; 22(2):301-12. PubMed ID: 8507831 [TBL] [Abstract][Full Text] [Related]
20. Threonine inhibition of the aspartokinase--homoserine dehydrogenase I of Escherichia coli. Stopped-flow kinetics and the cooperativity of inhibition of the homoserine dehydrogenase activity. Bearer CF; Neet KE Biochemistry; 1978 Aug; 17(17):3517-22. PubMed ID: 28751 [No Abstract] [Full Text] [Related] [Next] [New Search]