These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36371031)

  • 1. Design and application of a kinetic model of lipid metabolism in Saccharomyces cerevisiae.
    Mishra S; Wang Z; Volk MJ; Zhao H
    Metab Eng; 2023 Jan; 75():12-18. PubMed ID: 36371031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae.
    Leber C; Polson B; Fernandez-Moya R; Da Silva NA
    Metab Eng; 2015 Mar; 28():54-62. PubMed ID: 25461829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion.
    Ferreira R; Teixeira PG; Siewers V; Nielsen J
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1262-1267. PubMed ID: 29358378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism.
    Zhao Y; Zhang Y; Nielsen J; Liu Z
    Biotechnol Bioeng; 2021 May; 118(5):2043-2052. PubMed ID: 33605428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
    Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW
    Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae.
    Kamisaka Y; Noda N; Tomita N; Kimura K; Kodaki T; Hosaka K
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):646-53. PubMed ID: 16556980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.
    Li X; Guo D; Cheng Y; Zhu F; Deng Z; Liu T
    Biotechnol Bioeng; 2014 Sep; 111(9):1841-52. PubMed ID: 24752690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae.
    Bu X; Lin JY; Duan CQ; Koffas MAG; Yan GL
    Microb Cell Fact; 2022 Jan; 21(1):3. PubMed ID: 34983533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.
    Runguphan W; Keasling JD
    Metab Eng; 2014 Jan; 21():103-13. PubMed ID: 23899824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism.
    Savoglidis G; da Silveira Dos Santos AX; Riezman I; Angelino P; Riezman H; Hatzimanikatis V
    Metab Eng; 2016 Sep; 37():46-62. PubMed ID: 27113440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Saccharomyces cerevisiae for the accumulation of high amounts of triacylglycerol.
    Arhar S; Gogg-Fassolter G; Ogrizović M; Pačnik K; Schwaiger K; Žganjar M; Petrovič U; Natter K
    Microb Cell Fact; 2021 Jul; 20(1):147. PubMed ID: 34315498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant.
    Kamisaka Y; Kimura K; Uemura H; Ledesma-Amaro R
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8147-57. PubMed ID: 27311564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of substrate preference for Slc1p and Cst26p in Saccharomyces cerevisiae using lipidomic approaches and an LPAAT activity assay.
    Shui G; Guan XL; Gopalakrishnan P; Xue Y; Goh JS; Yang H; Wenk MR
    PLoS One; 2010 Aug; 5(8):e11956. PubMed ID: 20694142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.
    Chen L; Lee JJL; Zhang J; Chen WN
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1407-1420. PubMed ID: 26450510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemogenetic E-MAP in Saccharomyces cerevisiae for Identification of Membrane Transporters Operating Lipid Flip Flop.
    Vazquez HM; Vionnet C; Roubaty C; Mallela SK; Schneiter R; Conzelmann A
    PLoS Genet; 2016 Jul; 12(7):e1006160. PubMed ID: 27462707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosstalk between protein N-glycosylation and lipid metabolism in Saccharomyces cerevisiae.
    William James A; Ravi C; Srinivasan M; Nachiappan V
    Sci Rep; 2019 Oct; 9(1):14485. PubMed ID: 31597940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.
    Ploier B; Korber M; Schmidt C; Koch B; Leitner E; Daum G
    Biochim Biophys Acta; 2015 Jul; 1851(7):977-86. PubMed ID: 25720564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae.
    Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS
    Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.