These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 36371476)

  • 1. Application of classical and novel integrated machine learning models to predict sediment discharge during free-flow flushing.
    Javadi F; Qaderi K; Ahmadi MM; Rahimpour M; Madadi MR; Mahdavi-Meymand A
    Sci Rep; 2022 Nov; 12(1):19390. PubMed ID: 36371476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of evaporation from dam reservoirs under climate change using soft computing techniques.
    Kayhomayoon Z; Naghizadeh F; Malekpoor M; Arya Azar N; Ball J; Ghordoyee Milan S
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27912-27935. PubMed ID: 36385346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of black-box and white-box data-driven methods to predict landfill leachate permeability.
    Ghasemi M; Samadi M; Soleimanian E; Chau KW
    Environ Monit Assess; 2023 Jun; 195(7):862. PubMed ID: 37335361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models.
    Adeyinka DA; Muhajarine N
    BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing linear and non-linear data-driven approaches in monthly river flow prediction, based on the models SARIMA, LSSVM, ANFIS, and GMDH.
    Khodakhah H; Aghelpour P; Hamedi Z
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21935-21954. PubMed ID: 34773585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting coagulation-flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models.
    Ghasemi M; Hasani Zonoozi M; Rezania N; Saadatpour M
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72839-72852. PubMed ID: 35616836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.
    Seifi A; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.
    Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V
    Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and comparative analysis of ANN and SVR-based models with conventional regression models for predicting spray drift.
    Moges G; McDonnell K; Delele MA; Ali AN; Fanta SW
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21927-21944. PubMed ID: 36280637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of crop water stress index of wheat by using machine learning models.
    Yadav A; Narakala LM; Upreti H; Das Singhal G
    Environ Monit Assess; 2024 Sep; 196(10):970. PubMed ID: 39312101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Groundwater level response identification by hybrid wavelet-machine learning conjunction models using meteorological data.
    Samani S; Vadiati M; Nejatijahromi Z; Etebari B; Kisi O
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22863-22884. PubMed ID: 36308648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid machine learning approach integrating GMDH and SVR for heavy metal concentration prediction in dust samples.
    Piri J; Kahkha MRR; Kisi O
    Environ Sci Pollut Res Int; 2024 Sep; ():. PubMed ID: 39254810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the impacts of climate change on streamflow dynamics: A machine learning perspective.
    Khan M; Khan AU; Khan S; Khan FA
    Water Sci Technol; 2023 Nov; 88(9):2309-2331. PubMed ID: 37966185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models.
    Kouadri S; Pande CB; Panneerselvam B; Moharir KN; Elbeltagi A
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):21067-21091. PubMed ID: 34748181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Undrained Shear Strength by the GMDH-Type Neural Network Using SPT-Value and Soil Physical Properties.
    Kim M; Okuyucu O; Ordu E; Ordu S; Arslan Ö; Ko J
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capability assessment of conventional and data-driven models for prediction of suspended sediment load.
    Kumar A; Tripathi VK
    Environ Sci Pollut Res Int; 2022 Jul; 29(33):50040-50058. PubMed ID: 35226265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abutment scour in clear-water and live-bed conditions by GMDH network.
    Najafzadeh M; Barani GA; Kermani MR
    Water Sci Technol; 2013; 67(5):1121-8. PubMed ID: 23416606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Henry gas solubility optimization double machine learning classifier for neurosurgical patients.
    Mosa DT; Mahmoud A; Zaki J; Sorour SE; El-Sappagh S; Abuhmed T
    PLoS One; 2023; 18(5):e0285455. PubMed ID: 37167226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.